Complex example
This saves the results of a calculation to file and reloads them to analyze the results
Build the Model
"""
This script shows how to use the flixopt framework to model a more complex energy system.
"""
import numpy as np
import pandas as pd
from rich.pretty import pprint # Used for pretty printing
import flixopt as fx
if __name__ == '__main__':
# --- Experiment Options ---
# Configure options for testing various parameters and behaviors
check_penalty = False
excess_penalty = 1e5
use_chp_with_piecewise_conversion = True
time_indices = None # Define specific time steps for custom calculations, or use the entire series
# --- Define Demand and Price Profiles ---
# Input data for electricity and heat demands, as well as electricity price
electricity_demand = np.array([70, 80, 90, 90, 90, 90, 90, 90, 90])
heat_demand = (
np.array([30, 0, 90, 110, 2000, 20, 20, 20, 20])
if check_penalty
else np.array([30, 0, 90, 110, 110, 20, 20, 20, 20])
)
electricity_price = np.array([40, 40, 40, 40, 40, 40, 40, 40, 40])
# --- Define the Flow System, that will hold all elements, and the time steps you want to model ---
timesteps = pd.date_range('2020-01-01', periods=len(heat_demand), freq='h')
flow_system = fx.FlowSystem(timesteps) # Create FlowSystem
# --- Define Energy Buses ---
# Represent node balances (inputs=outputs) for the different energy carriers (electricity, heat, gas) in the system
flow_system.add_elements(
fx.Bus('Strom', excess_penalty_per_flow_hour=excess_penalty),
fx.Bus('Fernwärme', excess_penalty_per_flow_hour=excess_penalty),
fx.Bus('Gas', excess_penalty_per_flow_hour=excess_penalty),
)
# --- Define Effects ---
# Specify effects related to costs, CO2 emissions, and primary energy consumption
Costs = fx.Effect('costs', '€', 'Kosten', is_standard=True, is_objective=True)
CO2 = fx.Effect('CO2', 'kg', 'CO2_e-Emissionen', specific_share_to_other_effects_operation={Costs.label: 0.2})
PE = fx.Effect('PE', 'kWh_PE', 'Primärenergie', maximum_total=3.5e3)
# --- Define Components ---
# 1. Define Boiler Component
# A gas boiler that converts fuel into thermal output, with investment and on-off parameters
Gaskessel = fx.linear_converters.Boiler(
'Kessel',
eta=0.5, # Efficiency ratio
on_off_parameters=fx.OnOffParameters(
effects_per_running_hour={Costs.label: 0, CO2.label: 1000}
), # CO2 emissions per hour
Q_th=fx.Flow(
label='Q_th', # Thermal output
bus='Fernwärme', # Linked bus
size=fx.InvestParameters(
fix_effects=1000, # Fixed investment costs
fixed_size=50, # Fixed size
optional=False, # Forced investment
specific_effects={Costs.label: 10, PE.label: 2}, # Specific costs
),
load_factor_max=1.0, # Maximum load factor (50 kW)
load_factor_min=0.1, # Minimum load factor (5 kW)
relative_minimum=5 / 50, # Minimum part load
relative_maximum=1, # Maximum part load
previous_flow_rate=50, # Previous flow rate
flow_hours_total_max=1e6, # Total energy flow limit
on_off_parameters=fx.OnOffParameters(
on_hours_total_min=0, # Minimum operating hours
on_hours_total_max=1000, # Maximum operating hours
consecutive_on_hours_max=10, # Max consecutive operating hours
consecutive_on_hours_min=np.array(
[1, 1, 1, 1, 1, 2, 2, 2, 2]
), # min consecutive operation hoursconsecutive_off_hours_max=10, # Max consecutive off hours
effects_per_switch_on=0.01, # Cost per switch-on
switch_on_total_max=1000, # Max number of starts
),
),
Q_fu=fx.Flow(label='Q_fu', bus='Gas', size=200),
)
# 2. Define CHP Unit
# Combined Heat and Power unit that generates both electricity and heat from fuel
bhkw = fx.linear_converters.CHP(
'BHKW2',
eta_th=0.5,
eta_el=0.4,
on_off_parameters=fx.OnOffParameters(effects_per_switch_on=0.01),
P_el=fx.Flow('P_el', bus='Strom', size=60, relative_minimum=5 / 60),
Q_th=fx.Flow('Q_th', bus='Fernwärme', size=1e3),
Q_fu=fx.Flow('Q_fu', bus='Gas', size=1e3, previous_flow_rate=20), # The CHP was ON previously
)
# 3. Define CHP with Piecewise Conversion
# This CHP unit uses piecewise conversion for more dynamic behavior over time
P_el = fx.Flow('P_el', bus='Strom', size=60, previous_flow_rate=20)
Q_th = fx.Flow('Q_th', bus='Fernwärme')
Q_fu = fx.Flow('Q_fu', bus='Gas')
piecewise_conversion = fx.PiecewiseConversion(
{
P_el.label: fx.Piecewise([fx.Piece(5, 30), fx.Piece(40, 60)]),
Q_th.label: fx.Piecewise([fx.Piece(6, 35), fx.Piece(45, 100)]),
Q_fu.label: fx.Piecewise([fx.Piece(12, 70), fx.Piece(90, 200)]),
}
)
bhkw_2 = fx.LinearConverter(
'BHKW2',
inputs=[Q_fu],
outputs=[P_el, Q_th],
piecewise_conversion=piecewise_conversion,
on_off_parameters=fx.OnOffParameters(effects_per_switch_on=0.01),
)
# 4. Define Storage Component
# Storage with variable size and piecewise investment effects
segmented_investment_effects = fx.PiecewiseEffects(
piecewise_origin=fx.Piecewise([fx.Piece(5, 25), fx.Piece(25, 100)]),
piecewise_shares={
Costs.label: fx.Piecewise([fx.Piece(50, 250), fx.Piece(250, 800)]),
PE.label: fx.Piecewise([fx.Piece(5, 25), fx.Piece(25, 100)]),
},
)
speicher = fx.Storage(
'Speicher',
charging=fx.Flow('Q_th_load', bus='Fernwärme', size=1e4),
discharging=fx.Flow('Q_th_unload', bus='Fernwärme', size=1e4),
capacity_in_flow_hours=fx.InvestParameters(
piecewise_effects=segmented_investment_effects, # Investment effects
optional=False, # Forced investment
minimum_size=0,
maximum_size=1000, # Optimizing between 0 and 1000 kWh
),
initial_charge_state=0, # Initial charge state
maximal_final_charge_state=10, # Maximum final charge state
eta_charge=0.9,
eta_discharge=1, # Charge/discharge efficiency
relative_loss_per_hour=0.08, # Energy loss per hour, relative to current charge state
prevent_simultaneous_charge_and_discharge=True, # Prevent simultaneous charge/discharge
)
# 5. Define Sinks and Sources
# 5.a) Heat demand profile
Waermelast = fx.Sink(
'Wärmelast',
sink=fx.Flow(
'Q_th_Last', # Heat sink
bus='Fernwärme', # Linked bus
size=1,
fixed_relative_profile=heat_demand, # Fixed demand profile
),
)
# 5.b) Gas tariff
Gasbezug = fx.Source(
'Gastarif',
source=fx.Flow(
'Q_Gas',
bus='Gas', # Gas source
size=1000, # Nominal size
effects_per_flow_hour={Costs.label: 0.04, CO2.label: 0.3},
),
)
# 5.c) Feed-in of electricity
Stromverkauf = fx.Sink(
'Einspeisung',
sink=fx.Flow(
'P_el',
bus='Strom', # Feed-in tariff for electricity
effects_per_flow_hour=-1 * electricity_price, # Negative price for feed-in
),
)
# --- Build FlowSystem ---
# Select components to be included in the flow system
flow_system.add_elements(Costs, CO2, PE, Gaskessel, Waermelast, Gasbezug, Stromverkauf, speicher)
flow_system.add_elements(bhkw_2) if use_chp_with_piecewise_conversion else flow_system.add_elements(bhkw)
pprint(flow_system) # Get a string representation of the FlowSystem
# --- Solve FlowSystem ---
calculation = fx.FullCalculation('complex example', flow_system, time_indices)
calculation.do_modeling()
calculation.solve(fx.solvers.HighsSolver(0.01, 60))
# --- Results ---
# You can analyze results directly or save them to file and reload them later.
calculation.results.to_file()
# But let's plot some results anyway
calculation.results.plot_heatmap('BHKW2(Q_th)|flow_rate')
calculation.results['BHKW2'].plot_node_balance()
calculation.results['Speicher'].plot_charge_state()
calculation.results['Fernwärme'].plot_node_balance_pie()
Load the Results from file
"""
This script shows how load results of a prior calcualtion and how to analyze them.
"""
import pandas as pd
import plotly.offline
import flixopt as fx
if __name__ == '__main__':
# --- Load Results ---
try:
results = fx.results.CalculationResults.from_file('results', 'complex example')
except FileNotFoundError as e:
raise FileNotFoundError(
f"Results file not found in the specified directory ('results'). "
f"Please ensure that the file is generated by running 'complex_example.py'. "
f'Original error: {e}'
) from e
# --- Basic overview ---
results.plot_network(show=True)
results['Fernwärme'].plot_node_balance()
# --- Detailed Plots ---
# In depth plot for individual flow rates ('__' is used as the delimiter between Component and Flow
results.plot_heatmap('Wärmelast(Q_th_Last)|flow_rate')
for flow_rate in results['BHKW2'].inputs + results['BHKW2'].outputs:
results.plot_heatmap(flow_rate)
# --- Plotting internal variables manually ---
results.plot_heatmap('BHKW2(Q_th)|on')
results.plot_heatmap('Kessel(Q_th)|on')