"""This script shows how to use the flixopt framework to model a super minimalistic energy system."""importnumpyasnpimportpandasaspdfromrich.prettyimportpprintimportflixoptasfxif__name__=='__main__':# --- Define the Flow System, that will hold all elements, and the time steps you want to model ---timesteps=pd.date_range('2020-01-01',periods=3,freq='h')flow_system=fx.FlowSystem(timesteps)# --- Define Thermal Load Profile ---# Load profile (e.g., kW) for heating demand over timethermal_load_profile=np.array([30,0,20])# --- Define Energy Buses ---# These are balancing nodes (inputs=outputs) and balance the different energy carriers your systemflow_system.add_elements(fx.Bus('District Heating'),fx.Bus('Natural Gas'))# --- Define Objective Effect (Cost) ---# Cost effect representing the optimization objective (minimizing costs)cost_effect=fx.Effect('costs','€','Cost',is_standard=True,is_objective=True)# --- Define Flow System Components ---# Boiler component with thermal output (heat) and fuel input (gas)boiler=fx.linear_converters.Boiler('Boiler',eta=0.5,Q_th=fx.Flow(label='Thermal Output',bus='District Heating',size=50),Q_fu=fx.Flow(label='Fuel Input',bus='Natural Gas'),)# Heat load component with a fixed thermal demand profileheat_load=fx.Sink('Heat Demand',sink=fx.Flow(label='Thermal Load',bus='District Heating',size=1,fixed_relative_profile=thermal_load_profile),)# Gas source component with cost-effect per flow hourgas_source=fx.Source('Natural Gas Tariff',source=fx.Flow(label='Gas Flow',bus='Natural Gas',size=1000,effects_per_flow_hour=0.04),# 0.04 €/kWh)# --- Build the Flow System ---# Add all components and effects to the systemflow_system.add_elements(cost_effect,boiler,heat_load,gas_source)# --- Define, model and solve a Calculation ---calculation=fx.FullCalculation('Simulation1',flow_system)calculation.do_modeling()calculation.solve(fx.solvers.HighsSolver(0.01,60))# --- Analyze Results ---# Access the results of an elementdf1=calculation.results['costs'].filter_solution('time').to_dataframe()# Plot the results of a specific elementcalculation.results['District Heating'].plot_node_balance_pie()calculation.results['District Heating'].plot_node_balance()# Save results to a filedf2=calculation.results['District Heating'].node_balance().to_dataframe()# df2.to_csv('results/District Heating.csv') # Save results to csv# Print infos to the console.pprint(calculation.summary)