flixopt.structure
This module contains the core structure of the flixopt framework. These classes are not directly used by the end user, but are used by other modules.
Attributes
Classes
SystemModel
Bases: Model
The SystemModel is the linopy Model that is used to create the mathematical model of the flow_system. It is used to create and store the variables and constraints for the flow_system.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flow_system
|
FlowSystem
|
The flow_system that is used to create the model. |
required |
Functions
Interface
This class is used to collect arguments about a Model. Its the base class for all Elements and Models in flixopt.
Functions
transform_data
Transforms the data of the interface to match the FlowSystem's dimensions
infos
Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
use_numpy
|
bool
|
Whether to convert NumPy arrays to lists. Defaults to True.
If True, numeric numpy arrays ( |
True
|
use_element_label
|
bool
|
Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels. |
False
|
Returns:
Type | Description |
---|---|
Dict
|
A dictionary representation of the object's constructor arguments. |
to_json
Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Union[str, Path]
|
The path to the json file. |
required |
Element
Bases: Interface
This class is the basic Element of flixopt. Every Element has a label
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label
|
str
|
The label of the element |
required |
meta_data
|
Dict
|
used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types. |
None
|
Functions
transform_data
Transforms the data of the interface to match the FlowSystem's dimensions
infos
Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
use_numpy
|
bool
|
Whether to convert NumPy arrays to lists. Defaults to True.
If True, numeric numpy arrays ( |
True
|
use_element_label
|
bool
|
Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels. |
False
|
Returns:
Type | Description |
---|---|
Dict
|
A dictionary representation of the object's constructor arguments. |
to_json
Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Union[str, Path]
|
The path to the json file. |
required |
Model
Model(model: SystemModel, label_of_element: str, label: Optional[str] = None, label_full: Optional[str] = None)
Stores Variables and Constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
SystemModel
|
The SystemModel that is used to create the model. |
required |
label_of_element
|
str
|
The label of the parent (Element). Used to construct the full label of the model. |
required |
label
|
Optional[str]
|
The label of the model. Used to construct the full label of the model. |
None
|
label_full
|
Optional[str]
|
The full label of the model. Can overwrite the full label constructed from the other labels. |
None
|
Attributes
Functions
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|
ElementModel
Bases: Model
Stores the mathematical Variables and Constraints for Elements
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
SystemModel
|
The SystemModel that is used to create the model. |
required |
element
|
Element
|
The element this model is created for. |
required |
Attributes
Functions
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|
Functions
register_class_for_io
Register a class for serialization/deserialization.
copy_and_convert_datatypes
copy_and_convert_datatypes(data: Any, use_numpy: bool = True, use_element_label: bool = False) -> Any
Converts values in a nested data structure into JSON-compatible types while preserving or transforming numpy arrays
and custom Element
objects based on the specified options.
The function handles various data types and transforms them into a consistent, readable format:
- Primitive types (int
, float
, str
, bool
, None
) are returned as-is.
- Numpy scalars are converted to their corresponding Python scalar types.
- Collections (list
, tuple
, set
, dict
) are recursively processed to ensure all elements are compatible.
- Numpy arrays are preserved or converted to lists, depending on use_numpy
.
- Custom Element
objects can be represented either by their label
or their initialization parameters as a dictionary.
- Timestamps (datetime
) are converted to ISO 8601 strings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Any
|
The input data to process, which may be deeply nested and contain a mix of types. |
required |
use_numpy
|
bool
|
If |
True
|
use_element_label
|
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
Any
|
A transformed version of the input data, containing only JSON-compatible types: |
Any
|
|
Any
|
|
Any
|
|
Raises:
Type | Description |
---|---|
TypeError
|
If the data cannot be converted to the specified types. |
Examples:
>>> copy_and_convert_datatypes({'a': np.array([1, 2, 3]), 'b': Element(label='example')})
{'a': array([1, 2, 3]), 'b': {'class': 'Element', 'label': 'example'}}
>>> copy_and_convert_datatypes({'a': np.array([1, 2, 3]), 'b': Element(label='example')}, use_numpy=False)
{'a': [1, 2, 3], 'b': {'class': 'Element', 'label': 'example'}}
Notes
- The function gracefully handles unexpected types by issuing a warning and returning a deep copy of the data.
- Empty collections (lists, dictionaries) and default parameter values in
Element
objects are omitted from the output. - Numpy arrays with non-numeric data types are automatically converted to lists.
get_compact_representation
Generate a compact json serializable representation of deeply nested data. Numpy arrays are statistically described if they exceed a threshold and converted to lists.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Any
|
The data to format and represent. |
required |
array_threshold
|
int
|
Maximum length of NumPy arrays to display. Longer arrays are statistically described. |
50
|
decimals
|
int
|
Number of decimal places in which to describe the arrays. |
2
|
Returns:
Name | Type | Description |
---|---|---|
Dict |
Dict
|
A dictionary representation of the data |
get_str_representation
Generate a string representation of deeply nested data using rich.print
.
NumPy arrays are shortened to the specified length and converted to strings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Any
|
The data to format and represent. |
required |
array_threshold
|
int
|
Maximum length of NumPy arrays to display. Longer arrays are statistically described. |
50
|
decimals
|
int
|
Number of decimal places in which to describe the arrays. |
2
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The formatted string representation of the data. |