flixopt.features
This module contains the features of the flixopt framework. Features extend the functionality of Elements.
Attributes
Classes
InvestmentModel
InvestmentModel(model: SystemModel, label_of_element: str, parameters: InvestParameters, defining_variable: [Variable], relative_bounds_of_defining_variable: Tuple[NumericData, NumericData], label: Optional[str] = None, on_variable: Optional[Variable] = None)
Bases: Model
Class for modeling an investment
Attributes
Functions
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|
OnOffModel
OnOffModel(model: SystemModel, on_off_parameters: OnOffParameters, label_of_element: str, defining_variables: List[Variable], defining_bounds: List[Tuple[NumericData, NumericData]], previous_values: List[Optional[NumericData]], label: Optional[str] = None)
Bases: Model
Class for modeling the on and off state of a variable If defining_bounds are given, creates sufficient lower bounds
Constructor for OnOffModel
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
SystemModel
|
Reference to the SystemModel |
required |
on_off_parameters
|
OnOffParameters
|
Parameters for the OnOffModel |
required |
label_of_element
|
str
|
Label of the Parent |
required |
defining_variables
|
List[Variable]
|
List of Variables that are used to define the OnOffModel |
required |
defining_bounds
|
List[Tuple[NumericData, NumericData]]
|
List of Tuples, defining the absolute bounds of each defining variable |
required |
previous_values
|
List[Optional[NumericData]]
|
List of previous values of the defining variables |
required |
label
|
Optional[str]
|
Label of the OnOffModel |
None
|
Attributes
Functions
compute_previous_on_states
staticmethod
compute_previous_on_states(previous_values: List[Optional[NumericData]], epsilon: float = 1e-05) -> np.ndarray
Computes the previous 'on' states {0, 1} of defining variables as a binary array from their previous values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
previous_values
|
List[Optional[NumericData]]
|
List of previous values of the defining variables. In Range [0, inf] or None (ignored) |
required |
epsilon
|
float
|
Tolerance for equality to determine "off" state, default is 1e-5. |
1e-05
|
Returns:
Type | Description |
---|---|
ndarray
|
A binary array (0 and 1) indicating the previous on/off states of the variables. |
ndarray
|
Returns |
compute_consecutive_duration
staticmethod
compute_consecutive_duration(binary_values: NumericData, hours_per_timestep: Union[int, float, ndarray]) -> Scalar
Computes the final consecutive duration in State 'on' (=1) in hours, from a binary.
hours_per_timestep is handled in a way, that maximizes compatability. Its length must only be as long as the last consecutive duration in binary_values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
binary_values
|
NumericData
|
An int or 1D binary array containing only |
required |
hours_per_timestep
|
Union[int, float, ndarray]
|
The duration of each timestep in hours. |
required |
Returns:
Type | Description |
---|---|
Scalar
|
The duration of the binary variable in hours. |
Raises
TypeError If the length of binary_values and dt_in_hours is not equal, but None is a scalar.
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|
PieceModel
Bases: Model
Class for modeling a linear piece of one or more variables in parallel
Attributes
Functions
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|
PiecewiseModel
PiecewiseModel(model: SystemModel, label_of_element: str, label: str, piecewise_variables: Dict[str, Piecewise], zero_point: Optional[Union[bool, Variable]], as_time_series: bool)
Bases: Model
Modeling a Piecewise relation between miultiple variables. The relation is defined by a list of Pieces, which are assigned to the variables. Each Piece is a tuple of (start, end).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
SystemModel
|
The SystemModel that is used to create the model. |
required |
label_of_element
|
str
|
The label of the parent (Element). Used to construct the full label of the model. |
required |
label
|
str
|
The label of the model. Used to construct the full label of the model. |
required |
piecewise_variables
|
Dict[str, Piecewise]
|
The variables to which the Pieces are assigned. |
required |
zero_point
|
Optional[Union[bool, Variable]]
|
A variable that can be used to define a zero point for the Piecewise relation. If None or False, no zero point is defined. |
required |
as_time_series
|
bool
|
Whether the Piecewise relation is defined for a TimeSeries or a single variable. |
required |
Attributes
Functions
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|
ShareAllocationModel
ShareAllocationModel(model: SystemModel, shares_are_time_series: bool, label_of_element: Optional[str] = None, label: Optional[str] = None, label_full: Optional[str] = None, total_max: Optional[Scalar] = None, total_min: Optional[Scalar] = None, max_per_hour: Optional[NumericData] = None, min_per_hour: Optional[NumericData] = None)
Bases: Model
Attributes
Functions
add_share
Add a share to the share allocation model. If the share already exists, the expression is added to the existing share. The expression is added to the right hand side (rhs) of the constraint. The variable representing the total share is on the left hand side (lhs) of the constraint. var_total = sum(expressions)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the share. |
required |
expression
|
LinearExpression
|
The expression of the share. Added to the right hand side of the constraint. |
required |
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|
PreventSimultaneousUsageModel
PreventSimultaneousUsageModel(model: SystemModel, variables: List[Variable], label_of_element: str, label: str = 'PreventSimultaneousUsage')
Bases: Model
Prevents multiple Multiple Binary variables from being 1 at the same time
Only 'classic type is modeled for now (# "classic" -> alle Flows brauchen Binärvariable:) In 'new', the binary Variables need to be forced beforehand, which is not that straight forward... --> TODO maybe
"new":
eq: flow_1.on(t) + flow_2.on(t) + .. + flow_i.val(t)/flow_i.max <= 1 (1 Flow ohne Binärvariable!)
Anmerkung: Patrick Schönfeld (oemof, custom/link.py) macht bei 2 Flows ohne Binärvariable dies:
1) bin + flow1/flow1_max <= 1
2) bin - flow2/flow2_max >= 0
3) geht nur, wenn alle flow.min >= 0
--> könnte man auch umsetzen (statt force_on_variable() für die Flows, aber sollte aufs selbe wie "new" kommen)
Attributes
Functions
add
add(item: Union[Variable, Constraint, Model], short_name: Optional[str] = None) -> Union[linopy.Variable, linopy.Constraint, Model]
Add a variable, constraint or sub-model to the model
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item
|
Union[Variable, Constraint, Model]
|
The variable, constraint or sub-model to add to the model |
required |
short_name
|
Optional[str]
|
The short name of the variable, constraint or sub-model. If not provided, the full name is used. |
None
|