flixopt.core
This module contains the core functionality of the flixopt framework. It provides Datatypes, logging functionality, and some functions to transform data structures.
Attributes
Scalar
module-attribute
A type representing a single number, either integer or float.
NumericData
module-attribute
Represents any form of numeric data, from simple scalars to complex data structures.
NumericDataTS
module-attribute
Represents either standard numeric data or TimeSeriesData.
Classes
PlausibilityError
Bases: Exception
Error for a failing Plausibility check.
ConversionError
Bases: Exception
Base exception for data conversion errors.
DataConverter
Converts various data types into xarray.DataArray with a timesteps index.
Supports: scalars, arrays, Series, DataFrames, and DataArrays.
TimeSeriesData
TimeSeriesData(data: NumericData, agg_group: Optional[str] = None, agg_weight: Optional[float] = None)
timeseries class for transmit timeseries AND special characteristics of timeseries, i.g. to define weights needed in calculation_type 'aggregated' EXAMPLE solar: you have several solar timeseries. These should not be overweighted compared to the remaining timeseries (i.g. heat load, price)! fixed_relative_profile_solar1 = TimeSeriesData(sol_array_1, type = 'solar') fixed_relative_profile_solar2 = TimeSeriesData(sol_array_2, type = 'solar') fixed_relative_profile_solar3 = TimeSeriesData(sol_array_3, type = 'solar') --> this 3 series of same type share one weight, i.e. internally assigned each weight = 1/3 (instead of standard weight = 1)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
NumericData
|
The timeseries data, which can be a scalar, array, or numpy array. |
required |
agg_group
|
Optional[str]
|
The group this TimeSeriesData is a part of. agg_weight is split between members of a group. Default is None. |
None
|
agg_weight
|
Optional[float]
|
The weight for calculation_type 'aggregated', should be between 0 and 1. Default is None. |
None
|
Raises:
Type | Description |
---|---|
Exception
|
If both agg_group and agg_weight are set, an exception is raised. |
Functions
TimeSeries
TimeSeries(data: DataArray, name: str, aggregation_weight: Optional[float] = None, aggregation_group: Optional[str] = None, needs_extra_timestep: bool = False)
A class representing time series data with active and stored states.
TimeSeries provides a way to store time-indexed data and work with temporal subsets. It supports arithmetic operations, aggregation, and JSON serialization.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
The name of the time series |
aggregation_weight |
Optional[float]
|
Weight used for aggregation |
aggregation_group |
Optional[str]
|
Group name for shared aggregation weighting |
needs_extra_timestep |
bool
|
Whether this series needs an extra timestep |
Initialize a TimeSeries with a DataArray.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataArray
|
The DataArray containing time series data |
required |
name
|
str
|
The name of the TimeSeries |
required |
aggregation_weight
|
Optional[float]
|
The weight in aggregation calculations |
None
|
aggregation_group
|
Optional[str]
|
Group this TimeSeries belongs to for weight sharing |
None
|
needs_extra_timestep
|
bool
|
Whether this series requires an extra timestep |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If data doesn't have a 'time' index or has more than 1 dimension |
Attributes
stats
property
Return a statistical summary of the active data.
Returns:
Type | Description |
---|---|
str
|
String representation of data statistics |
active_timesteps
property
writable
Get the current active timesteps.
Functions
from_datasource
classmethod
from_datasource(data: NumericData, name: str, timesteps: DatetimeIndex, aggregation_weight: Optional[float] = None, aggregation_group: Optional[str] = None, needs_extra_timestep: bool = False) -> TimeSeries
Initialize the TimeSeries from multiple data sources.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
NumericData
|
The time series data |
required |
name
|
str
|
The name of the TimeSeries |
required |
timesteps
|
DatetimeIndex
|
The timesteps of the TimeSeries |
required |
aggregation_weight
|
Optional[float]
|
The weight in aggregation calculations |
None
|
aggregation_group
|
Optional[str]
|
Group this TimeSeries belongs to for aggregation weight sharing |
None
|
needs_extra_timestep
|
bool
|
Whether this series requires an extra timestep |
False
|
Returns:
Type | Description |
---|---|
TimeSeries
|
A new TimeSeries instance |
from_json
classmethod
Load a TimeSeries from a dictionary or json file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Optional[Dict[str, Any]]
|
Dictionary containing TimeSeries data |
None
|
path
|
Optional[str]
|
Path to a JSON file containing TimeSeries data |
None
|
Returns:
Type | Description |
---|---|
TimeSeries
|
A new TimeSeries instance |
Raises:
Type | Description |
---|---|
ValueError
|
If both path and data are provided or neither is provided |
TimeSeriesCollection
TimeSeriesCollection(timesteps: DatetimeIndex, hours_of_last_timestep: Optional[float] = None, hours_of_previous_timesteps: Optional[Union[float, ndarray]] = None)
Collection of TimeSeries objects with shared timestep management.
TimeSeriesCollection handles multiple TimeSeries objects with synchronized timesteps, provides operations on collections, and manages extra timesteps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
timesteps
|
DatetimeIndex
|
The timesteps of the Collection. |
required |
hours_of_last_timestep
|
Optional[float]
|
The duration of the last time step. Uses the last time interval if not specified |
None
|
hours_of_previous_timesteps
|
Optional[Union[float, ndarray]]
|
The duration of previous timesteps. If None, the first time increment of time_series is used. This is needed to calculate previous durations (for example consecutive_on_hours). If you use an array, take care that its long enough to cover all previous values! |
None
|
Attributes
hours_of_last_timestep
property
Get the duration of the last timestep.
Functions
with_uniform_timesteps
classmethod
with_uniform_timesteps(start_time: Timestamp, periods: int, freq: str, hours_per_step: Optional[float] = None) -> TimeSeriesCollection
Create a collection with uniform timesteps.
create_time_series
create_time_series(data: Union[NumericData, TimeSeriesData], name: str, needs_extra_timestep: bool = False) -> TimeSeries
Creates a TimeSeries from the given data and adds it to the collection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Union[NumericData, TimeSeriesData]
|
The data to create the TimeSeries from. |
required |
name
|
str
|
The name of the TimeSeries. |
required |
needs_extra_timestep
|
bool
|
Whether to create an additional timestep at the end of the timesteps. |
False
|
Returns:
Type | Description |
---|---|
TimeSeries
|
The created TimeSeries. |
calculate_aggregation_weights
Calculate and return aggregation weights for all time series.
activate_timesteps
Update active timesteps for the collection and all time series. If no arguments are provided, the active timesteps are reset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
active_timesteps
|
Optional[DatetimeIndex]
|
The active timesteps of the model. If None, the all timesteps of the TimeSeriesCollection are taken. |
None
|
add_time_series
Add an existing TimeSeries to the collection.
insert_new_data
Update time series with new data from a DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
DataFrame containing new data with timestamps as index |
required |
include_extra_timestep
|
bool
|
Whether the provided data already includes the extra timestep, by default False |
False
|
to_dataframe
to_dataframe(filtered: Literal['all', 'constant', 'non_constant'] = 'non_constant', include_extra_timestep: bool = True) -> pd.DataFrame
Convert collection to DataFrame with optional filtering and timestep control.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filtered
|
Literal['all', 'constant', 'non_constant']
|
Filter time series by variability, by default 'non_constant' |
'non_constant'
|
include_extra_timestep
|
bool
|
Whether to include the extra timestep in the result, by default True |
True
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame representation of the collection |
to_dataset
Combine all time series into a single Dataset with all timesteps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
include_constants
|
bool
|
Whether to include time series with constant values, by default True |
True
|
Returns:
Type | Description |
---|---|
Dataset
|
Dataset containing all selected time series with all timesteps |