Calculation Mode comparison
Note: This example relies on time series data. You can find it in the examples
folder of the flixOpt repository.
"""
This script demonstrates how to use the different calcualtion types in the flixOPt framework
to model the same energy system. THe Results will be compared to each other.
"""
import pathlib
from typing import Dict, List, Union
import numpy as np
import pandas as pd
from rich.pretty import pprint # Used for pretty printing
import flixOpt as fx
if __name__ == '__main__':
# Calculation Types
full, segmented, aggregated = True, True, True
# Segmented Properties
segment_length, overlap_length = 96, 1
# Aggregated Properties
aggregation_parameters = fx.AggregationParameters(
hours_per_period=6,
nr_of_periods=4,
fix_storage_flows=True,
aggregate_data_and_fix_non_binary_vars=True,
percentage_of_period_freedom=0,
penalty_of_period_freedom=0,
)
keep_extreme_periods = True
# Data Import
data_import = pd.read_csv(pathlib.Path('Zeitreihen2020.csv'), index_col=0).sort_index()
filtered_data = data_import['2020-01-01':'2020-01-2 23:45:00']
# filtered_data = data_import[0:500] # Alternatively filter by index
filtered_data.index = pd.to_datetime(filtered_data.index)
datetime_series = np.array(filtered_data.index).astype('datetime64')
# Access specific columns and convert to 1D-numpy array
electricity_demand = filtered_data['P_Netz/MW'].to_numpy()
heat_demand = filtered_data['Q_Netz/MW'].to_numpy()
electricity_price = filtered_data['Strompr.€/MWh'].to_numpy()
gas_price = filtered_data['Gaspr.€/MWh'].to_numpy()
# TimeSeriesData objects
TS_heat_demand = fx.TimeSeriesData(heat_demand)
TS_electricity_demand = fx.TimeSeriesData(electricity_demand, agg_weight=0.7)
TS_electricity_price_sell = fx.TimeSeriesData(-(electricity_demand - 0.5), agg_group='p_el')
TS_electricity_price_buy = fx.TimeSeriesData(electricity_price + 0.5, agg_group='p_el')
# Bus Definitions
excess_penalty = 1e5 # or set to None if not needed
Strom = fx.Bus('Strom', excess_penalty_per_flow_hour=excess_penalty)
Fernwaerme = fx.Bus('Fernwärme', excess_penalty_per_flow_hour=excess_penalty)
Gas = fx.Bus('Gas', excess_penalty_per_flow_hour=excess_penalty)
Kohle = fx.Bus('Kohle', excess_penalty_per_flow_hour=excess_penalty)
# Effects
costs = fx.Effect('costs', '€', 'Kosten', is_standard=True, is_objective=True)
CO2 = fx.Effect('CO2', 'kg', 'CO2_e-Emissionen')
PE = fx.Effect('PE', 'kWh_PE', 'Primärenergie')
# Component Definitions
# 1. Boiler
a_gaskessel = fx.linear_converters.Boiler(
'Kessel',
eta=0.85,
Q_th=fx.Flow(label='Q_th', bus=Fernwaerme),
Q_fu=fx.Flow(
label='Q_fu',
bus=Gas,
size=95,
relative_minimum=12 / 95,
previous_flow_rate=20,
on_off_parameters=fx.OnOffParameters(effects_per_switch_on=1000),
),
)
# 2. CHP
a_kwk = fx.linear_converters.CHP(
'BHKW2',
eta_th=0.58,
eta_el=0.22,
on_off_parameters=fx.OnOffParameters(effects_per_switch_on=24000),
P_el=fx.Flow('P_el', bus=Strom, size=200),
Q_th=fx.Flow('Q_th', bus=Fernwaerme, size=200),
Q_fu=fx.Flow('Q_fu', bus=Kohle, size=288, relative_minimum=87 / 288, previous_flow_rate=100),
)
# 3. Storage
a_speicher = fx.Storage(
'Speicher',
capacity_in_flow_hours=684,
initial_charge_state=137,
minimal_final_charge_state=137,
maximal_final_charge_state=158,
eta_charge=1,
eta_discharge=1,
relative_loss_per_hour=0.001,
prevent_simultaneous_charge_and_discharge=True,
charging=fx.Flow('Q_th_load', size=137, bus=Fernwaerme),
discharging=fx.Flow('Q_th_unload', size=158, bus=Fernwaerme),
)
# 4. Sinks and Sources
# Heat Load Profile
a_waermelast = fx.Sink(
'Wärmelast', sink=fx.Flow('Q_th_Last', bus=Fernwaerme, size=1, fixed_relative_profile=TS_heat_demand)
)
# Electricity Feed-in
a_strom_last = fx.Sink(
'Stromlast', sink=fx.Flow('P_el_Last', bus=Strom, size=1, fixed_relative_profile=TS_electricity_demand)
)
# Gas Tariff
a_gas_tarif = fx.Source(
'Gastarif', source=fx.Flow('Q_Gas', bus=Gas, size=1000, effects_per_flow_hour={costs: gas_price, CO2: 0.3})
)
# Coal Tariff
a_kohle_tarif = fx.Source(
'Kohletarif', source=fx.Flow('Q_Kohle', bus=Kohle, size=1000, effects_per_flow_hour={costs: 4.6, CO2: 0.3})
)
# Electricity Tariff and Feed-in
a_strom_einspeisung = fx.Sink(
'Einspeisung', sink=fx.Flow('P_el', bus=Strom, size=1000, effects_per_flow_hour=TS_electricity_price_sell)
)
a_strom_tarif = fx.Source(
'Stromtarif',
source=fx.Flow('P_el', bus=Strom, size=1000, effects_per_flow_hour={costs: TS_electricity_price_buy, CO2: 0.3}),
)
# Flow System Setup
flow_system = fx.FlowSystem(datetime_series)
flow_system.add_effects(costs, CO2, PE)
flow_system.add_components(
a_gaskessel,
a_waermelast,
a_strom_last,
a_gas_tarif,
a_kohle_tarif,
a_strom_einspeisung,
a_strom_tarif,
a_kwk,
a_speicher,
)
flow_system.visualize_network(controls=False)
# Calculations
kinds = ['Full', 'Segmented', 'Aggregated']
calculations: dict = {key: None for key in kinds}
results: dict = {key: None for key in kinds}
if full:
calculation = fx.FullCalculation('fullModel', flow_system, 'pyomo')
calculation.do_modeling()
calculation.solve(fx.solvers.HighsSolver())
calculations['Full'] = calculation
results['Full'] = calculations['Full'].results()
if segmented:
calculation = fx.SegmentedCalculation('segModel', flow_system, segment_length, overlap_length)
calculation.do_modeling_and_solve(fx.solvers.HighsSolver())
calculations['Segmented'] = calculation
results['Segmented'] = calculations['Segmented'].results(combined_arrays=True)
if aggregated:
if keep_extreme_periods:
aggregation_parameters.time_series_for_high_peaks = [TS_heat_demand]
aggregation_parameters.time_series_for_low_peaks = [TS_electricity_demand, TS_heat_demand]
calculation = fx.AggregatedCalculation('aggModel', flow_system, aggregation_parameters)
calculation.do_modeling()
calculation.solve(fx.solvers.HighsSolver())
calculations['Aggregated'] = calculation
results['Aggregated'] = calculations['Aggregated'].results()
pprint(results)
def extract_result(results_data: dict[str, dict], keys: List[str]) -> Dict[str, Union[int, float, np.ndarray]]:
"""
Function to retrieve values from a nested dictionary.
Tries to get the wanted value for eachnkey in the first layer of the dict.
Returns a dict with one key value pair for each dict it found a value in.
"""
def get_nested_value(d, ks):
for k in ks:
if isinstance(d, dict):
d = d.get(k, None)
else:
return None
return d
return {kind: get_nested_value(results_data.get(kind, {}), keys) for kind in results_data.keys()}
if calculations['Full'] is not None:
time_series_used = calculations['Full'].system_model.time_series
time_series_used_w_end = calculations['Full'].system_model.time_series_with_end
else:
time_series_used = calculations['Aggregated'].system_model.time_series
time_series_used_w_end = calculations['Aggregated'].system_model.time_series_with_end
data = pd.DataFrame(
extract_result(results, ['Components', 'Speicher', 'charge_state']), index=time_series_used_w_end
)
fig = fx.plotting.with_plotly(data, 'line')
fig.update_layout(title='Charge State Comparison', xaxis_title='Time', yaxis_title='Charge state')
fig.write_html('results/Charge State.html')
data = pd.DataFrame(extract_result(results, ['Components', 'BHKW2', 'Q_th', 'flow_rate']), index=time_series_used)
fig = fx.plotting.with_plotly(data, 'line')
fig.update_layout(title='BHKW2 Q_th Flow Rate Comparison', xaxis_title='Time', yaxis_title='Flow rate')
fig.write_html('results/BHKW2 Thermal Power.html')
data = pd.DataFrame(
extract_result(results, ['Effects', 'costs', 'operation', 'operation_sum_TS']),
index=calculations['Full'].system_model.time_series,
)
fig = fx.plotting.with_plotly(data, 'line')
fig.update_layout(title='Cost Comparison', xaxis_title='Time', yaxis_title='Costs (€)')
fig.write_html('results/Operation Costs.html')
data = pd.DataFrame(
extract_result(results, ['Effects', 'costs', 'operation', 'operation_sum_TS']), index=time_series_used
)
data = pd.DataFrame(data.sum()).T
fig = fx.plotting.with_plotly(data, 'bar')
fig.update_layout(title='Total Cost Comparison', yaxis_title='Costs (€)', barmode='group')
fig.write_html('results/Total Costs.html')
duration_data = pd.DataFrame(
{
'Full': [calculations['Full'].durations.get(key, 0) for key in calculations['Aggregated'].durations],
'Aggregated': [
calculations['Aggregated'].durations.get(key, 0) for key in calculations['Aggregated'].durations
],
'Segmented': [
calculations['Segmented'].durations.get(key, 0) for key in calculations['Aggregated'].durations
],
},
index=list(calculations['Aggregated'].durations.keys()),
).T
fig = fx.plotting.with_plotly(duration_data, 'bar')
fig.update_layout(title='Duration Comparison', xaxis_title='Calculation type', yaxis_title='Time (s)')
fig.write_html('results/Speed Comparison.html')