Skip to content

flixOpt.structure

This module contains the core structure of the flixOpt framework. These classes are not directly used by the end user, but are used by other modules.

Classes

SystemModel

SystemModel(label: str, modeling_language: Literal['pyomo', 'cvxpy'], flow_system: FlowSystem, time_indices: Optional[Union[List[int], range]])

Bases: MathModel

Hier kommen die ModellingLanguage-spezifischen Sachen rein

Attributes

variables property
variables: List[Variable]

Needed for Mother class

equations property
equations: List[Equation]

Needed for Mother class

inequations property
inequations: List[Inequation]

Needed for Mother class

Functions

solve
solve(solver: Solver, excess_threshold: Union[int, float] = 0.1)

Parameters:

Name Type Description Default
solver Solver

An Instance of the class Solver. Choose from flixOpt.solvers

required
excess_threshold float, positive!

threshold for excess: If sum(Excess)>excess_threshold a warning is raised, that an excess occurs

0.1

Interface

This class is used to collect arguments about a Model.

Functions

infos
infos(use_numpy=True, use_element_label=False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

use_numpy bool: Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists. use_element_label bool: Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

Returns: Dict: A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

path : Union[str, pathlib.Path] The path to the json file.

Element

Element(label: str, meta_data: Dict = None)

Bases: Interface

Basic Element of flixOpt

Parameters:

Name Type Description Default
label str

label of the element

required
meta_data Optional[Dict]

used to store more information about the element. Is not used internally, but saved in the results

None

Functions

infos
infos(use_numpy=True, use_element_label=False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

use_numpy bool: Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists. use_element_label bool: Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

Returns: Dict: A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

path : Union[str, pathlib.Path] The path to the json file.

ElementModel

ElementModel(element: Element, label: Optional[str] = None)

Interface to create the mathematical Models for Elements

Functions

create_equation

create_equation(label: str, element_model: ElementModel, eq_type: Literal['eq', 'ineq'] = 'eq') -> Union[Equation, Inequation]

Creates an Equation and adds it to the model of the Element

create_variable

create_variable(label: str, element_model: ElementModel, length: int, is_binary: bool = False, fixed_value: Optional[Numeric] = None, lower_bound: Optional[Numeric] = None, upper_bound: Optional[Numeric] = None, previous_values: Optional[Numeric] = None, avoid_use_of_variable_ts: bool = False) -> VariableTS

Creates a VariableTS and adds it to the model of the Element

copy_and_convert_datatypes

copy_and_convert_datatypes(data: Any, use_numpy: bool = True, use_element_label: bool = False) -> Any

Converts values in a nested data structure into JSON-compatible types while preserving or transforming numpy arrays and custom Element objects based on the specified options.

The function handles various data types and transforms them into a consistent, readable format: - Primitive types (int, float, str, bool, None) are returned as-is. - Numpy scalars are converted to their corresponding Python scalar types. - Collections (list, tuple, set, dict) are recursively processed to ensure all elements are compatible. - Numpy arrays are preserved or converted to lists, depending on use_numpy. - Custom Element objects can be represented either by their label or their initialization parameters as a dictionary. - Timestamps (datetime) are converted to ISO 8601 strings.

Parameters:

Name Type Description Default
data Any

The input data to process, which may be deeply nested and contain a mix of types.

required
use_numpy bool

If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists. Default is True.

True
use_element_label bool

If True, Element objects are represented by their label. If False, they are converted into a dictionary based on their initialization parameters. Default is False.

False

Returns:

Type Description
Any

A transformed version of the input data, containing only JSON-compatible types: - int, float, str, bool, None - list, dict - np.ndarray (if use_numpy=True. This is NOT JSON-compatible)

Raises:

Type Description
TypeError

If the data cannot be converted to the specified types.

Examples:

>>> copy_and_convert_datatypes({'a': np.array([1, 2, 3]), 'b': Element(label='example')})
{'a': array([1, 2, 3]), 'b': {'class': 'Element', 'label': 'example'}}
>>> copy_and_convert_datatypes({'a': np.array([1, 2, 3]), 'b': Element(label='example')}, use_numpy=False)
{'a': [1, 2, 3], 'b': {'class': 'Element', 'label': 'example'}}
Notes
  • The function gracefully handles unexpected types by issuing a warning and returning a deep copy of the data.
  • Empty collections (lists, dictionaries) and default parameter values in Element objects are omitted from the output.
  • Numpy arrays with non-numeric data types are automatically converted to lists.

get_compact_representation

get_compact_representation(data: Any, array_threshold: int = 50, decimals: int = 2) -> Dict

Generate a compact json serializable representation of deeply nested data. Numpy arrays are statistically described if they exceed a threshold and converted to lists.

Args: data (Any): The data to format and represent. array_threshold (int): Maximum length of NumPy arrays to display. Longer arrays are statistically described. decimals (int): Number of decimal places in which to describe the arrays.

Returns: Dict: A dictionary representation of the data

get_str_representation

get_str_representation(data: Any, array_threshold: int = 50, decimals: int = 2) -> str

Generate a string representation of deeply nested data using rich.print. NumPy arrays are shortened to the specified length and converted to strings.

Args: data (Any): The data to format and represent. array_threshold (int): Maximum length of NumPy arrays to display. Longer arrays are statistically described. decimals (int): Number of decimal places in which to describe the arrays.

Returns: str: The formatted string representation of the data.