Skip to content

flixOpt.results

This module contains the Results functionality of the flixOpt framework. It provides high level functions to analyze the results of a calculation. It leverages the plotting.py module to plot the results. The results can also be analyzed without this module, as the results are stored in a widely supported format.

Classes

CalculationResults

CalculationResults(calculation_name: str, folder: str)

Functions

to_dataframe
to_dataframe(label: str, variable_name: str = 'flow_rate', input_factor: Optional[Literal[1, -1]] = -1, output_factor: Optional[Literal[1, -1]] = 1, threshold: Optional[float] = 1e-05, with_last_time_step: bool = True) -> pd.DataFrame

Convert results of a specified element to a DataFrame.

Parameters:

Name Type Description Default
label str

The label of the element (Component, Bus, or Flow) to retrieve data for.

required
variable_name str

The name of the variable to extract from the element's data.

'flow_rate'
input_factor Optional[Literal[1, -1]]

Factor to apply to input values.

-1
output_factor Optional[Literal[1, -1]]

Factor to apply to output values.

1
threshold Optional[float]

Minimum absolute value for data inclusion in the DataFrame.

1e-5
with_last_time_step bool

Whether to include the last time step in the DataFrame index.

True

Returns:

Type Description
DataFrame

A DataFrame containing the specified variable's data with a datetime index. Dataframe is empty (no index), if no values are left after filtering.

Raises:

Type Description
ValueError

If no data is found for the specified variable.

plot_operation
plot_operation(label: str, mode: Literal['bar', 'line', 'area', 'heatmap'] = 'area', variable_name: str = 'flow_rate', heatmap_periods: Literal['YS', 'MS', 'W', 'D', 'h', '15min', 'min'] = 'D', heatmap_steps_per_period: Literal['W', 'D', 'h', '15min', 'min'] = 'h', colors: Union[str, List[str]] = 'viridis', engine: Literal['plotly', 'matplotlib'] = 'plotly', invert: bool = True, show: bool = True, save: bool = False, path: Union[str, Path, Literal['auto']] = 'auto') -> Union[go.Figure, Tuple[plt.Figure, plt.Axes]]

Plots the operation results for a specified Element using the chosen plotting engine and mode.

Parameters:

Name Type Description Default
label str

The label of the element to plot (e.g., a component or bus).

required
mode (bar, line, area, heatmap)

The type of plot to generate.

'bar'
variable_name str

The variable to plot from the element's data.

'flow_rate'
heatmap_periods (YS, MS, W, D, h, '15min', min)

The period for heatmap plotting.

'YS'
heatmap_steps_per_period (W, D, h, '15min', min)

The steps per period for heatmap plotting.

'W'
colors str or List[str]

The colors or colorscale to use for the plot.

'viridis'
engine (plotly, matplotlib)

The plotting engine to use.

'plotly'
invert bool

Whether to invert the input and output factors.

False
show bool

Whether to display the plot immediately. (This includes saving the plot to file when engine='plotly')

True
save bool

Whether to save the plot to a file.

False
path Union[str, Path, Literal['auto']]

The path to save the plot to. If 'auto', the plot is saved to an automatically named file.

'auto'

Returns:

Type Description
Union[Figure, Tuple[Figure, Axes]]

The generated plot object, either a Plotly figure or a Matplotlib figure and axes.

Raises:

Type Description
ValueError

If an invalid engine or color configuration is provided for heatmap mode.

plot_storage
plot_storage(label: str, variable_name: str = 'flow_rate', mode: Literal['bar', 'line', 'area'] = 'area', colors: Union[str, List[str]] = 'viridis', invert: bool = True, show: bool = True, save: bool = False, path: Union[str, Path, Literal['auto']] = 'auto')

Plots the storage operation results for a specified Storage Element, including its charge state.

Parameters:

Name Type Description Default
label str

The label of the Storage to plot

required
variable_name str

The variable to plot from the element's data.

'flow_rate'
mode (bar, line, area)

The type of plot to generate.

'bar'
colors str or List[str]

The colors or colorscale to use for the plot.

'viridis'
invert bool

Whether to invert the input and output factors.

True
show bool

Whether to display the plot immediately. (This includes saving the plot to file when engine='plotly')

True
save bool

Whether to save the plot to a file.

False
path Union[str, Path, Literal['auto']]

The path to save the plot to. If 'auto', the plot is saved to an automatically named file.

'auto'

Returns:

Type Description
Figure

The generated Plotly figure object with the storage operation plot.

visualize_network
visualize_network(path: Union[bool, str, Path] = 'results/network.html', controls: Union[bool, List[Literal['nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer']]] = True, show: bool = True) -> Optional[pyvis.network.Network]

Visualizes the network structure of a FlowSystem using PyVis, saving it as an interactive HTML file.

Parameters:

Name Type Description Default
path Union[bool, str, Path]

Path to save the HTML visualization. If False, the visualization is created but not saved.

'results/network.html'
controls Union[bool, List[str]]

UI controls to add to the visualization. True enables all available controls, or specify a list of controls.

True
show bool

Whether to open the visualization in the web browser.

True

Returns:

Type Description
Optional[Network]

The Network instance representing the visualization, or None if pyvis is not installed.

Notes

This function requires pyvis. If not installed, the function prints a warning and returns None. Nodes are styled based on type (e.g., circles for buses, boxes for components) and annotated with node information.

Functions

extract_single_result

extract_single_result(results_data: dict[str, Dict[str, Union[int, float, ndarray, dict]]], keys: List[str]) -> Optional[Union[int, float, np.ndarray]]

Goes through a nested dictionary with the given keys. Returns the value if found. Else returns None

extract_results

extract_results(results_data: dict[str, Dict[str, Union[int, float, ndarray, dict]]], keys: List[str], keep_none: bool = False) -> Dict[str, Union[int, float, np.ndarray]]

For each item in a dictionary, goes through its sub dictionaries. Returns the value if found. Else returns None. If specified, removes all None values

flatten_dict

flatten_dict(d, parent_key='', sep='__')

Recursively flattens a nested dictionary.

Parameters: d (dict): The dictionary to flatten. parent_key (str): The base key for the current recursion level. sep (str): The separator to use when concatenating keys.

Returns: dict: A flattened dictionary.