flixOpt.flow_system
This module contains the FlowSystem class, which is used to collect instances of many other classes by the end User.
Classes
FlowSystem
FlowSystem(time_series: ndarray[datetime64], last_time_step_hours: Optional[Union[int, float]] = None, previous_dt_in_hours: Optional[Union[int, float, ndarray]] = None)
A FlowSystem organizes the high level Elements (Components & Effects).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_series
|
np.ndarray of datetime64
|
timeseries of the data. Must be in datetime64 format. Don't use precisions below 'us'. !np.datetime64[ns]! |
required |
last_time_step_hours
|
Optional[Union[int, float]]
|
The duration of last time step. Storages needs this time-duration for calculation of charge state after last time step. If None, then last time increment of time_series is used. |
None
|
previous_dt_in_hours
|
Union[int, float, ndarray]
|
The duration of previous time steps. If None, the first time increment of time_series is used. This is needed to calculate previous durations (for example consecutive_on_hours). If you use an array, take care that its long enough to cover all previous values! |
None
|
Functions
add_elements
add all modeling elements, like storages, boilers, heatpumps, buses, ...
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
childs of Element like Boiler, HeatPump, Bus,...
|
modeling Elements |
()
|
to_json
Saves the flow system to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.
Parameters:
path : Union[str, pathlib.Path] The path to the json file.
visualize_network
visualize_network(path: Union[bool, str, Path] = 'flow_system.html', controls: Union[bool, List[Literal['nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer']]] = True, show: bool = True) -> Optional[pyvis.network.Network]
Visualizes the network structure of a FlowSystem using PyVis, saving it as an interactive HTML file.
Parameters:
- path (Union[bool, str, pathlib.Path], default='flow_system.html'):
Path to save the HTML visualization.
- False
: Visualization is created but not saved.
- str
or Path
: Specifies file path (default: 'flow_system.html').
-
controls (Union[bool, List[str]], default=True): UI controls to add to the visualization.
True
: Enables all available controls.List
: Specify controls, e.g., ['nodes', 'layout'].- Options: 'nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer'.
-
show (bool, default=True): Whether to open the visualization in the web browser.
Returns:
- Optional[pyvis.network.Network]: The Network
instance representing the visualization, or None
if pyvis
is not installed.
Usage: - Visualize and open the network with default options:
self.visualize_network()
-
Save the visualization without opening:
self.visualize_network(show=False)
-
Visualize with custom controls and path:
self.visualize_network(path='output/custom_network.html', controls=['nodes', 'layout'])
Notes:
- This function requires pyvis
. If not installed, the function prints a warning and returns None
.
- Nodes are styled based on type (e.g., circles for buses, boxes for components) and annotated with node information.
get_time_data_from_indices
get_time_data_from_indices(time_indices: Optional[Union[List[int], range]] = None) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.float64]
Computes time series data based on the provided time indices.
Args: time_indices: A list of indices or a range object indicating which time steps to extract. If None, the entire time series is used.
Returns: A tuple containing: - Extracted time series - Time series with the "end time" appended - Differences between consecutive timestamps in hours - Total time in hours
Functions
create_datetime_array
create_datetime_array(start: str, steps: Optional[int] = None, freq: str = '1h', end: Optional[str] = None) -> np.ndarray[np.datetime64]
Create a NumPy array with datetime64 values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start
|
str
|
Start date in 'YYYY-MM-DD' format or a full timestamp (e.g., 'YYYY-MM-DD HH:MM'). |
required |
steps
|
int
|
Number of steps in the datetime array. If |
None
|
freq
|
str
|
Frequency for the datetime64 array. Supports flexible intervals: - 'Y', 'M', 'W', 'D', 'h', 'm', 's' (e.g., '1h', '15m', '2h'). Defaults to 'h' (hourly). |
'1h'
|
end
|
str
|
End date in 'YYYY-MM-DD' format or a full timestamp (e.g., 'YYYY-MM-DD HH:MM').
If provided, the function generates an array from |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
NumPy array of datetime64 values. |
Examples:
Create an array with 15-minute intervals:
>>> create_datetime_array('2023-01-01', steps=5, freq='15m')
array(['2023-01-01T00:00', '2023-01-01T00:15', '2023-01-01T00:30', ...], dtype='datetime64[m]')
Create 2-hour intervals:
>>> create_datetime_array('2023-01-01T00', steps=4, freq='2h')
array(['2023-01-01T00', '2023-01-01T02', '2023-01-01T04', ...], dtype='datetime64[h]')
Generate minute intervals until a specified end time: