Skip to content

flixOpt.features

This module contains the features of the flixOpt framework. Features extend the functionality of Elements.

Classes

InvestmentModel

InvestmentModel(element: Union[Flow, Storage], invest_parameters: InvestParameters, defining_variable: [VariableTS], relative_bounds_of_defining_variable: Tuple[Numeric, Numeric], fixed_relative_profile: Optional[Numeric] = None, label: str = 'Investment', on_variable: Optional[VariableTS] = None)

Bases: ElementModel

Class for modeling an investment

If fixed relative profile is used, the relative bounds are ignored

Functions

OnOffModel

OnOffModel(element: Element, on_off_parameters: OnOffParameters, defining_variables: List[VariableTS], defining_bounds: List[Tuple[Numeric, Numeric]], label: str = 'OnOff')

Bases: ElementModel

Class for modeling the on and off state of a variable If defining_bounds are given, creates sufficient lower bounds

defining_bounds: a list of Numeric, that can be used to create the bound for On/Off more efficiently

Functions

get_consecutive_duration classmethod
get_consecutive_duration(binary_values: Union[int, ndarray], dt_in_hours: Union[int, float, ndarray]) -> Skalar

Returns the current consecutive duration in hours, computed from binary values. If only one binary value is availlable, the last dt_in_hours is used. Of both binary_values and dt_in_hours are arrays, checks that the length of dt_in_hours has at least as many elements as the last consecutive duration in binary_values.

Parameters:

Name Type Description Default
binary_values (int, ndarray)

An int or 1D binary array containing only 0s and 1s.

required
dt_in_hours (int, float, ndarray)

The duration of each time step in hours.

required

Returns:

Type Description
ndarray

The duration of the binary variable in hours.

Raises:

Type Description
TypeError

If the length of binary_values and dt_in_hours is not equal, but None is a scalar.

SegmentModel

SegmentModel(element: Element, segment_index: Union[int, str], sample_points: Dict[Variable, Tuple[Union[Numeric, TimeSeries], Union[Numeric, TimeSeries]]], as_time_series: bool = True)

Bases: ElementModel

Class for modeling a linear segment of one or more variables in parallel

MultipleSegmentsModel

MultipleSegmentsModel(element: Element, sample_points: Dict[Variable, List[Tuple[Numeric, Numeric]]], can_be_outside_segments: Optional[Union[bool, Variable]], as_time_series: bool = True, label: str = 'MultipleSegments')

Bases: ElementModel

can_be_outside_segments: True -> Variable gets created; False or None -> No Variable gets_created; Variable -> the Variable gets used

Functions

ShareAllocationModel

ShareAllocationModel(element: Element, label: str, shares_are_time_series: bool, total_max: Optional[Skalar] = None, total_min: Optional[Skalar] = None, max_per_hour: Optional[Numeric] = None, min_per_hour: Optional[Numeric] = None)

Bases: ElementModel

Functions

add_share
add_share(system_model: SystemModel, name_of_share: str, variable: Optional[Variable], factor: Numeric, share_as_sum: bool = False)

Adding a Share to a Share Allocation Model.

SingleShareModel

SingleShareModel(element: Element, name: str, variable: Optional[Variable], factor: Numeric, share_as_sum: bool)

Bases: ElementModel

Holds a Variable and an Equation. Summands can be added to the Equation. Used to publish Shares

PreventSimultaneousUsageModel

PreventSimultaneousUsageModel(element: Element, variables: List[VariableTS], label: str = 'PreventSimultaneousUsage')

Bases: ElementModel

Prevents multiple Multiple Binary variables from being 1 at the same time

Only 'classic type is modeled for now (# "classic" -> alle Flows brauchen Binärvariable:) In 'new', the binary Variables need to be forced beforehand, which is not that straight forward... --> TODO maybe

"new":

eq: flow_1.on(t) + flow_2.on(t) + .. + flow_i.val(t)/flow_i.max <= 1 (1 Flow ohne Binärvariable!)

Anmerkung: Patrick Schönfeld (oemof, custom/link.py) macht bei 2 Flows ohne Binärvariable dies:

1) bin + flow1/flow1_max <= 1

2) bin - flow2/flow2_max >= 0

3) geht nur, wenn alle flow.min >= 0

--> könnte man auch umsetzen (statt force_on_variable() für die Flows, aber sollte aufs selbe wie "new" kommen)

Functions