flixopt.results
Classes
CalculationResults
CalculationResults(solution: Dataset, flow_system: Dataset, name: str, summary: Dict, folder: Optional[Path] = None, model: Optional[Model] = None)
Results container for Calculation results.
This class is used to collect the results of a Calculation. It provides access to component, bus, and effect results, and includes methods for filtering, plotting, and saving results.
The recommended way to create instances is through the class methods
from_file()
or from_calculation()
, rather than direct initialization.
Attributes:
Name | Type | Description |
---|---|---|
solution |
Dataset
|
Dataset containing optimization results. |
flow_system |
Dataset
|
Dataset containing the flow system. |
summary |
Dict
|
Information about the calculation. |
name |
str
|
Name identifier for the calculation. |
model |
Model
|
The optimization model (if available). |
folder |
Path
|
Path to the results directory. |
components |
Dict[str, ComponentResults]
|
Results for each component. |
buses |
Dict[str, BusResults]
|
Results for each bus. |
effects |
Dict[str, EffectResults]
|
Results for each effect. |
timesteps_extra |
DatetimeIndex
|
The extended timesteps. |
hours_per_timestep |
DataArray
|
Duration of each timestep in hours. |
Example
Load results from saved files:
results = CalculationResults.from_file('results_dir', 'optimization_run_1') element_result = results['Boiler'] results.plot_heatmap('Boiler(Q_th)|flow_rate') results.to_file(compression=5) results.to_file(folder='new_results_dir', compression=5) # Save the results to a new folder
Parameters:
Name | Type | Description | Default |
---|---|---|---|
solution
|
Dataset
|
The solution of the optimization. |
required |
flow_system
|
Dataset
|
The flow_system that was used to create the calculation as a datatset. |
required |
name
|
str
|
The name of the calculation. |
required |
summary
|
Dict
|
Information about the calculation, |
required |
folder
|
Optional[Path]
|
The folder where the results are saved. |
None
|
model
|
Optional[Model]
|
The linopy model that was used to solve the calculation. |
None
|
Attributes
variables
property
The variables of the optimization. Only available if the linopy.Model is available.
constraints
property
The constraints of the optimization. Only available if the linopy.Model is available.
Functions
from_file
classmethod
Create CalculationResults instance by loading from saved files.
This method loads the calculation results from previously saved files, including the solution, flow system, model (if available), and metadata.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
folder
|
Union[str, Path]
|
Path to the directory containing the saved files. |
required |
name
|
str
|
Base name of the saved files (without file extensions). |
required |
Returns:
Name | Type | Description |
---|---|---|
CalculationResults |
A new instance containing the loaded data. |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If required files cannot be found. |
ValueError
|
If files exist but cannot be properly loaded. |
from_calculation
classmethod
Create CalculationResults directly from a Calculation object.
This method extracts the solution, flow system, and other relevant information directly from an existing Calculation object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
calculation
|
Calculation
|
A Calculation object containing a solved model. |
required |
Returns:
Name | Type | Description |
---|---|---|
CalculationResults |
A new instance containing the results from the provided calculation. |
Raises:
Type | Description |
---|---|
AttributeError
|
If the calculation doesn't have required attributes. |
filter_solution
filter_solution(variable_dims: Optional[Literal['scalar', 'time']] = None, element: Optional[str] = None) -> xr.Dataset
Filter the solution to a specific variable dimension and element. If no element is specified, all elements are included.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
variable_dims
|
Optional[Literal['scalar', 'time']]
|
The dimension of the variables to filter for. |
None
|
element
|
Optional[str]
|
The element to filter for. |
None
|
plot_network
plot_network(controls: Union[bool, List[Literal['nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer']]] = True, path: Optional[Path] = None, show: bool = False) -> pyvis.network.Network
See flixopt.flow_system.FlowSystem.plot_network
to_file
to_file(folder: Optional[Union[str, Path]] = None, name: Optional[str] = None, compression: int = 5, document_model: bool = True, save_linopy_model: bool = False)
Save the results to a file Args: folder: The folder where the results should be saved. Defaults to the folder of the calculation. name: The name of the results file. If not provided, Defaults to the name of the calculation. compression: The compression level to use when saving the solution file (0-9). 0 means no compression. document_model: Wether to document the mathematical formulations in the model. save_linopy_model: Wether to save the model to file. If True, the (linopy) model is saved as a .nc4 file. The model file size is rougly 100 times larger than the solution file.
BusResults
BusResults(calculation_results: CalculationResults, label: str, variables: List[str], constraints: List[str], inputs: List[str], outputs: List[str])
Bases: _NodeResults
Results for a Bus
Attributes
variables
property
Returns the variables of the element.
Raises:
Type | Description |
---|---|
ValueError
|
If the linopy model is not availlable. |
constraints
property
Returns the variables of the element.
Raises:
Type | Description |
---|---|
ValueError
|
If the linopy model is not availlable. |
Functions
filter_solution
Filter the solution of the element by dimension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
variable_dims
|
Optional[Literal['scalar', 'time']]
|
The dimension of the variables to filter for. |
None
|
plot_node_balance
plot_node_balance(save: Union[bool, Path] = False, show: bool = True, colors: ColorType = 'viridis', engine: PlottingEngine = 'plotly') -> Union[plotly.graph_objs.Figure, Tuple[plt.Figure, plt.Axes]]
Plots the node balance of the Component or Bus. Args: save: Whether to save the plot or not. If a path is provided, the plot will be saved at that location. show: Whether to show the plot or not. engine: The engine to use for plotting. Can be either 'plotly' or 'matplotlib'.
plot_node_balance_pie
plot_node_balance_pie(lower_percentage_group: float = 5, colors: ColorType = 'viridis', text_info: str = 'percent+label+value', save: Union[bool, Path] = False, show: bool = True, engine: PlottingEngine = 'plotly') -> plotly.graph_objects.Figure
Plots a pie chart of the flow hours of the inputs and outputs of buses or components.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
colors
|
ColorType
|
a colorscale or a list of colors to use for the plot |
'viridis'
|
lower_percentage_group
|
float
|
The percentage of flow_hours that is grouped in "Others" (0...100) |
5
|
text_info
|
str
|
What information to display on the pie plot |
'percent+label+value'
|
save
|
Union[bool, Path]
|
Whether to save the figure. |
False
|
show
|
bool
|
Whether to show the figure. |
True
|
engine
|
PlottingEngine
|
Plotting engine to use. Only 'plotly' is implemented atm. |
'plotly'
|
ComponentResults
ComponentResults(calculation_results: CalculationResults, label: str, variables: List[str], constraints: List[str], inputs: List[str], outputs: List[str])
Bases: _NodeResults
Results for a Component
Attributes
variables
property
Returns the variables of the element.
Raises:
Type | Description |
---|---|
ValueError
|
If the linopy model is not availlable. |
constraints
property
Returns the variables of the element.
Raises:
Type | Description |
---|---|
ValueError
|
If the linopy model is not availlable. |
Functions
plot_charge_state
plot_charge_state(save: Union[bool, Path] = False, show: bool = True, colors: ColorType = 'viridis', engine: PlottingEngine = 'plotly') -> plotly.graph_objs.Figure
Plots the charge state of a Storage. Args: save: Whether to save the plot or not. If a path is provided, the plot will be saved at that location. show: Whether to show the plot or not. colors: The c engine: Plotting engine to use. Only 'plotly' is implemented atm.
Raises:
Type | Description |
---|---|
ValueError
|
If the Component is not a Storage. |
node_balance_with_charge_state
node_balance_with_charge_state(negate_inputs: bool = True, negate_outputs: bool = False, threshold: Optional[float] = 1e-05) -> xr.Dataset
Returns a dataset with the node balance of the Storage including its charge state. Args: negate_inputs: Whether to negate the inputs of the Storage. negate_outputs: Whether to negate the outputs of the Storage. threshold: The threshold for small values.
Raises:
Type | Description |
---|---|
ValueError
|
If the Component is not a Storage. |
filter_solution
Filter the solution of the element by dimension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
variable_dims
|
Optional[Literal['scalar', 'time']]
|
The dimension of the variables to filter for. |
None
|
plot_node_balance
plot_node_balance(save: Union[bool, Path] = False, show: bool = True, colors: ColorType = 'viridis', engine: PlottingEngine = 'plotly') -> Union[plotly.graph_objs.Figure, Tuple[plt.Figure, plt.Axes]]
Plots the node balance of the Component or Bus. Args: save: Whether to save the plot or not. If a path is provided, the plot will be saved at that location. show: Whether to show the plot or not. engine: The engine to use for plotting. Can be either 'plotly' or 'matplotlib'.
plot_node_balance_pie
plot_node_balance_pie(lower_percentage_group: float = 5, colors: ColorType = 'viridis', text_info: str = 'percent+label+value', save: Union[bool, Path] = False, show: bool = True, engine: PlottingEngine = 'plotly') -> plotly.graph_objects.Figure
Plots a pie chart of the flow hours of the inputs and outputs of buses or components.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
colors
|
ColorType
|
a colorscale or a list of colors to use for the plot |
'viridis'
|
lower_percentage_group
|
float
|
The percentage of flow_hours that is grouped in "Others" (0...100) |
5
|
text_info
|
str
|
What information to display on the pie plot |
'percent+label+value'
|
save
|
Union[bool, Path]
|
Whether to save the figure. |
False
|
show
|
bool
|
Whether to show the figure. |
True
|
engine
|
PlottingEngine
|
Plotting engine to use. Only 'plotly' is implemented atm. |
'plotly'
|
EffectResults
EffectResults(calculation_results: CalculationResults, label: str, variables: List[str], constraints: List[str])
Bases: _ElementResults
Results for an Effect
Attributes
variables
property
Returns the variables of the element.
Raises:
Type | Description |
---|---|
ValueError
|
If the linopy model is not availlable. |
constraints
property
Returns the variables of the element.
Raises:
Type | Description |
---|---|
ValueError
|
If the linopy model is not availlable. |
Functions
get_shares_from
Get the shares from an Element (without subelements) to the Effect
SegmentedCalculationResults
SegmentedCalculationResults(segment_results: List[CalculationResults], all_timesteps: DatetimeIndex, timesteps_per_segment: int, overlap_timesteps: int, name: str, folder: Optional[Path] = None)
Class to store the results of a SegmentedCalculation.
Functions
from_file
classmethod
Create SegmentedCalculationResults directly from file
solution_without_overlap
Returns the solution of a variable without overlapping timesteps
plot_heatmap
plot_heatmap(variable_name: str, heatmap_timeframes: Literal['YS', 'MS', 'W', 'D', 'h', '15min', 'min'] = 'D', heatmap_timesteps_per_frame: Literal['W', 'D', 'h', '15min', 'min'] = 'h', color_map: str = 'portland', save: Union[bool, Path] = False, show: bool = True, engine: PlottingEngine = 'plotly') -> Union[plotly.graph_objs.Figure, Tuple[plt.Figure, plt.Axes]]
Plots a heatmap of the solution of a variable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
variable_name
|
str
|
The name of the variable to plot. |
required |
heatmap_timeframes
|
Literal['YS', 'MS', 'W', 'D', 'h', '15min', 'min']
|
The timeframes to use for the heatmap. |
'D'
|
heatmap_timesteps_per_frame
|
Literal['W', 'D', 'h', '15min', 'min']
|
The timesteps per frame to use for the heatmap. |
'h'
|
color_map
|
str
|
The color map to use for the heatmap. |
'portland'
|
save
|
Union[bool, Path]
|
Whether to save the plot or not. If a path is provided, the plot will be saved at that location. |
False
|
show
|
bool
|
Whether to show the plot or not. |
True
|
engine
|
PlottingEngine
|
The engine to use for plotting. Can be either 'plotly' or 'matplotlib'. |
'plotly'
|
Functions
plot_heatmap
plot_heatmap(dataarray: DataArray, name: str, folder: Path, heatmap_timeframes: Literal['YS', 'MS', 'W', 'D', 'h', '15min', 'min'] = 'D', heatmap_timesteps_per_frame: Literal['W', 'D', 'h', '15min', 'min'] = 'h', color_map: str = 'portland', save: Union[bool, Path] = False, show: bool = True, engine: PlottingEngine = 'plotly')
Plots a heatmap of the solution of a variable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataarray
|
DataArray
|
The dataarray to plot. |
required |
name
|
str
|
The name of the variable to plot. |
required |
folder
|
Path
|
The folder to save the plot to. |
required |
heatmap_timeframes
|
Literal['YS', 'MS', 'W', 'D', 'h', '15min', 'min']
|
The timeframes to use for the heatmap. |
'D'
|
heatmap_timesteps_per_frame
|
Literal['W', 'D', 'h', '15min', 'min']
|
The timesteps per frame to use for the heatmap. |
'h'
|
color_map
|
str
|
The color map to use for the heatmap. |
'portland'
|
save
|
Union[bool, Path]
|
Whether to save the plot or not. If a path is provided, the plot will be saved at that location. |
False
|
show
|
bool
|
Whether to show the plot or not. |
True
|
engine
|
PlottingEngine
|
The engine to use for plotting. Can be either 'plotly' or 'matplotlib'. |
'plotly'
|
sanitize_dataset
sanitize_dataset(ds: Dataset, timesteps: Optional[DatetimeIndex] = None, threshold: Optional[float] = 1e-05, negate: Optional[List[str]] = None, drop_small_vars: bool = True, zero_small_values: bool = False) -> xr.Dataset
Sanitizes a dataset by handling small values (dropping or zeroing) and optionally reindexing the time axis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ds
|
Dataset
|
The dataset to sanitize. |
required |
timesteps
|
Optional[DatetimeIndex]
|
The timesteps to reindex the dataset to. If None, the original timesteps are kept. |
None
|
threshold
|
Optional[float]
|
The threshold for small values processing. If None, no processing is done. |
1e-05
|
negate
|
Optional[List[str]]
|
The variables to negate. If None, no variables are negated. |
None
|
drop_small_vars
|
bool
|
If True, drops variables where all values are below threshold. |
True
|
zero_small_values
|
bool
|
If True, sets values below threshold to zero. |
False
|
Returns:
Type | Description |
---|---|
Dataset
|
xr.Dataset: The sanitized dataset. |
filter_dataset
filter_dataset(ds: Dataset, variable_dims: Optional[Literal['scalar', 'time']] = None) -> xr.Dataset
Filters a dataset by its dimensions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ds
|
Dataset
|
The dataset to filter. |
required |
variable_dims
|
Optional[Literal['scalar', 'time']]
|
The dimension of the variables to filter for. |
None
|