flixopt.plotting
This module contains the plotting functionality of the flixopt framework. It provides high level functions to plot data with plotly and matplotlib. It's meant to be used in results.py, but is designed to be used by the end user as well.
Attributes
ColorType
module-attribute
Identifier for the colors to use. Use the name of a colorscale, a list of colors or a dictionary of labels to colors. The colors must be valid color strings (HEX or names). Depending on the Engine used, other formats are possible. See also: - https://htmlcolorcodes.com/color-names/ - https://matplotlib.org/stable/tutorials/colors/colormaps.html - https://plotly.com/python/builtin-colorscales/
PlottingEngine
module-attribute
Identifier for the plotting engine to use.
Classes
ColorProcessor
Class to handle color processing for different visualization engines.
Initialize the color processor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
engine
|
PlottingEngine
|
The plotting engine to use ('plotly' or 'matplotlib') |
'plotly'
|
default_colormap
|
str
|
Default colormap to use if none is specified |
'viridis'
|
Functions
process_colors
process_colors(colors: ColorType, labels: List[str], return_mapping: bool = False) -> Union[List[Any], Dict[str, Any]]
Process colors for the specified labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
colors
|
ColorType
|
Color specification (colormap name, list of colors, or label-to-color mapping) |
required |
labels
|
List[str]
|
List of data labels that need colors assigned |
required |
return_mapping
|
bool
|
If True, returns a dictionary mapping labels to colors; if False, returns a list of colors in the same order as labels |
False
|
Returns:
Type | Description |
---|---|
Union[List[Any], Dict[str, Any]]
|
Either a list of colors or a dictionary mapping labels to colors |
Functions
with_plotly
with_plotly(data: DataFrame, mode: Literal['bar', 'line', 'area'] = 'area', colors: ColorType = 'viridis', title: str = '', ylabel: str = '', xlabel: str = 'Time in h', fig: Optional[Figure] = None) -> go.Figure
Plot a DataFrame with Plotly, using either stacked bars or stepped lines.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
A DataFrame containing the data to plot, where the index represents time (e.g., hours), and each column represents a separate data series. |
required |
mode
|
Literal['bar', 'line', 'area']
|
The plotting mode. Use 'bar' for stacked bar charts, 'line' for stepped lines, or 'area' for stacked area charts. |
'area'
|
colors
|
ColorType
|
Color specification, can be: - A string with a colorscale name (e.g., 'viridis', 'plasma') - A list of color strings (e.g., ['#ff0000', '#00ff00']) - A dictionary mapping column names to colors (e.g., {'Column1': '#ff0000'}) |
'viridis'
|
title
|
str
|
The title of the plot. |
''
|
ylabel
|
str
|
The label for the y-axis. |
''
|
fig
|
Optional[Figure]
|
A Plotly figure object to plot on. If not provided, a new figure will be created. |
None
|
Returns:
Type | Description |
---|---|
Figure
|
A Plotly figure object containing the generated plot. |
with_matplotlib
with_matplotlib(data: DataFrame, mode: Literal['bar', 'line'] = 'bar', colors: ColorType = 'viridis', title: str = '', ylabel: str = '', xlabel: str = 'Time in h', figsize: Tuple[int, int] = (12, 6), fig: Optional[Figure] = None, ax: Optional[Axes] = None) -> Tuple[plt.Figure, plt.Axes]
Plot a DataFrame with Matplotlib using stacked bars or stepped lines.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
A DataFrame containing the data to plot. The index should represent time (e.g., hours), and each column represents a separate data series. |
required |
mode
|
Literal['bar', 'line']
|
Plotting mode. Use 'bar' for stacked bar charts or 'line' for stepped lines. |
'bar'
|
colors
|
ColorType
|
Color specification, can be: - A string with a colormap name (e.g., 'viridis', 'plasma') - A list of color strings (e.g., ['#ff0000', '#00ff00']) - A dictionary mapping column names to colors (e.g., {'Column1': '#ff0000'}) |
'viridis'
|
title
|
str
|
The title of the plot. |
''
|
ylabel
|
str
|
The ylabel of the plot. |
''
|
xlabel
|
str
|
The xlabel of the plot. |
'Time in h'
|
figsize
|
Tuple[int, int]
|
Specify the size of the figure |
(12, 6)
|
fig
|
Optional[Figure]
|
A Matplotlib figure object to plot on. If not provided, a new figure will be created. |
None
|
ax
|
Optional[Axes]
|
A Matplotlib axes object to plot on. If not provided, a new axes will be created. |
None
|
Returns:
Type | Description |
---|---|
Tuple[Figure, Axes]
|
A tuple containing the Matplotlib figure and axes objects used for the plot. |
Notes
- If
mode
is 'bar', bars are stacked for both positive and negative values. Negative values are stacked separately without extra labels in the legend. - If
mode
is 'line', stepped lines are drawn for each data series. - The legend is placed below the plot to accommodate multiple data series.
heat_map_matplotlib
heat_map_matplotlib(data: DataFrame, color_map: str = 'viridis', title: str = '', xlabel: str = 'Period', ylabel: str = 'Step', figsize: Tuple[float, float] = (12, 6)) -> Tuple[plt.Figure, plt.Axes]
Plots a DataFrame as a heatmap using Matplotlib. The columns of the DataFrame will be displayed on the x-axis, the index will be displayed on the y-axis, and the values will represent the 'heat' intensity in the plot.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
A DataFrame containing the data to be visualized. The index will be used for the y-axis, and columns will be used for the x-axis. The values in the DataFrame will be represented as colors in the heatmap. |
required |
color_map
|
str
|
The colormap to use for the heatmap. Default is 'viridis'. Matplotlib supports various colormaps like 'plasma', 'inferno', 'cividis', etc. |
'viridis'
|
figsize
|
Tuple[float, float]
|
The size of the figure to create. Default is (12, 6), which results in a width of 12 inches and a height of 6 inches. |
(12, 6)
|
Returns:
Type | Description |
---|---|
Figure
|
A tuple containing the Matplotlib |
Axes
|
where the heatmap is drawn. These can be used for further customization or saving the plot to a file. |
Notes
- The y-axis is flipped so that the first row of the DataFrame is displayed at the top of the plot.
- The color scale is normalized based on the minimum and maximum values in the DataFrame.
- The x-axis labels (periods) are placed at the top of the plot.
- The colorbar is added horizontally at the bottom of the plot, with a label.
heat_map_plotly
heat_map_plotly(data: DataFrame, color_map: str = 'viridis', title: str = '', xlabel: str = 'Period', ylabel: str = 'Step', categorical_labels: bool = True) -> go.Figure
Plots a DataFrame as a heatmap using Plotly. The columns of the DataFrame will be mapped to the x-axis, and the index will be displayed on the y-axis. The values in the DataFrame will represent the 'heat' in the plot.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
A DataFrame with the data to be visualized. The index will be used for the y-axis, and columns will be used for the x-axis. The values in the DataFrame will be represented as colors in the heatmap. |
required |
color_map
|
str
|
The color scale to use for the heatmap. Default is 'viridis'. Plotly supports various color scales like 'Cividis', 'Inferno', etc. |
'viridis'
|
categorical_labels
|
bool
|
If True, the x and y axes are treated as categorical data (i.e., the index and columns will not be interpreted as continuous data). Default is True. If False, the axes are treated as continuous, which may be useful for time series or numeric data. |
True
|
show
|
Wether to show the figure after creation. (This includes saving the figure) |
required | |
save
|
Wether to save the figure after creation (without showing) |
required | |
path
|
Path to save the figure. |
required |
Returns:
Type | Description |
---|---|
Figure
|
A Plotly figure object containing the heatmap. This can be further customized and saved |
Figure
|
or displayed using |
Notes
The color bar is automatically scaled to the minimum and maximum values in the data. The y-axis is reversed to display the first row at the top.
reshape_to_2d
Reshapes a 1D numpy array into a 2D array suitable for plotting as a colormap.
The reshaped array will have the number of rows corresponding to the steps per column (e.g., 24 hours per day) and columns representing time periods (e.g., days or months).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_1d
|
ndarray
|
A 1D numpy array with the data to reshape. |
required |
nr_of_steps_per_column
|
int
|
The number of steps (rows) per column in the resulting 2D array. For example, this could be 24 (for hours) or 31 (for days in a month). |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The reshaped 2D array. Each internal array corresponds to one column, with the specified number of steps. |
ndarray
|
Each column might represents a time period (e.g., day, month, etc.). |
heat_map_data_from_df
heat_map_data_from_df(df: DataFrame, periods: Literal['YS', 'MS', 'W', 'D', 'h', '15min', 'min'], steps_per_period: Literal['W', 'D', 'h', '15min', 'min'], fill: Optional[Literal['ffill', 'bfill']] = None) -> pd.DataFrame
Reshapes a DataFrame with a DateTime index into a 2D array for heatmap plotting, based on a specified sample rate. If a non-valid combination of periods and steps per period is used, falls back to numerical indices
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
A DataFrame with a DateTime index containing the data to reshape. |
required |
periods
|
Literal['YS', 'MS', 'W', 'D', 'h', '15min', 'min']
|
The time interval of each period (columns of the heatmap), such as 'YS' (year start), 'W' (weekly), 'D' (daily), 'h' (hourly) etc. |
required |
steps_per_period
|
Literal['W', 'D', 'h', '15min', 'min']
|
The time interval within each period (rows in the heatmap), such as 'YS' (year start), 'W' (weekly), 'D' (daily), 'h' (hourly) etc. |
required |
fill
|
Optional[Literal['ffill', 'bfill']]
|
Method to fill missing values: 'ffill' for forward fill or 'bfill' for backward fill. |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
A DataFrame suitable for heatmap plotting, with rows representing steps within each period |
DataFrame
|
and columns representing each period. |
plot_network
plot_network(node_infos: dict, edge_infos: dict, path: Optional[Union[str, Path]] = None, controls: Union[bool, List[Literal['nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer']]] = True, show: bool = False) -> Optional[pyvis.network.Network]
Visualizes the network structure of a FlowSystem using PyVis, using info-dictionaries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Optional[Union[str, Path]]
|
Path to save the HTML visualization. |
None
|
controls
|
Union[bool, List[Literal['nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer']]]
|
UI controls to add to the visualization. |
True
|
show
|
bool
|
Whether to open the visualization in the web browser. The calculation must be saved to show it. If no path is given, it defaults to 'network.html'. |
False
|
Returns:
The Network
instance representing the visualization, or None
if pyvis
is not installed.
Notes:
- This function requires pyvis
. If not installed, the function prints a warning and returns None
.
- Nodes are styled based on type (e.g., circles for buses, boxes for components) and annotated with node information.
pie_with_plotly
pie_with_plotly(data: DataFrame, colors: ColorType = 'viridis', title: str = '', legend_title: str = '', hole: float = 0.0, fig: Optional[Figure] = None) -> go.Figure
Create a pie chart with Plotly to visualize the proportion of values in a DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
A DataFrame containing the data to plot. If multiple rows exist, they will be summed unless a specific index value is passed. |
required |
colors
|
ColorType
|
Color specification, can be: - A string with a colorscale name (e.g., 'viridis', 'plasma') - A list of color strings (e.g., ['#ff0000', '#00ff00']) - A dictionary mapping column names to colors (e.g., {'Column1': '#ff0000'}) |
'viridis'
|
title
|
str
|
The title of the plot. |
''
|
legend_title
|
str
|
The title for the legend. |
''
|
hole
|
float
|
Size of the hole in the center for creating a donut chart (0.0 to 1.0). |
0.0
|
fig
|
Optional[Figure]
|
A Plotly figure object to plot on. If not provided, a new figure will be created. |
None
|
Returns:
Type | Description |
---|---|
Figure
|
A Plotly figure object containing the generated pie chart. |
Notes
- Negative values are not appropriate for pie charts and will be converted to absolute values with a warning.
- If the data contains very small values (less than 1% of the total), they can be grouped into an "Other" category for better readability.
- By default, the sum of all columns is used for the pie chart. For time series data, consider preprocessing.
pie_with_matplotlib
pie_with_matplotlib(data: DataFrame, colors: ColorType = 'viridis', title: str = '', legend_title: str = 'Categories', hole: float = 0.0, figsize: Tuple[int, int] = (10, 8), fig: Optional[Figure] = None, ax: Optional[Axes] = None) -> Tuple[plt.Figure, plt.Axes]
Create a pie chart with Matplotlib to visualize the proportion of values in a DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
DataFrame
|
A DataFrame containing the data to plot. If multiple rows exist, they will be summed unless a specific index value is passed. |
required |
colors
|
ColorType
|
Color specification, can be: - A string with a colormap name (e.g., 'viridis', 'plasma') - A list of color strings (e.g., ['#ff0000', '#00ff00']) - A dictionary mapping column names to colors (e.g., {'Column1': '#ff0000'}) |
'viridis'
|
title
|
str
|
The title of the plot. |
''
|
legend_title
|
str
|
The title for the legend. |
'Categories'
|
hole
|
float
|
Size of the hole in the center for creating a donut chart (0.0 to 1.0). |
0.0
|
figsize
|
Tuple[int, int]
|
The size of the figure (width, height) in inches. |
(10, 8)
|
fig
|
Optional[Figure]
|
A Matplotlib figure object to plot on. If not provided, a new figure will be created. |
None
|
ax
|
Optional[Axes]
|
A Matplotlib axes object to plot on. If not provided, a new axes will be created. |
None
|
Returns:
Type | Description |
---|---|
Tuple[Figure, Axes]
|
A tuple containing the Matplotlib figure and axes objects used for the plot. |
Notes
- Negative values are not appropriate for pie charts and will be converted to absolute values with a warning.
- If the data contains very small values (less than 1% of the total), they can be grouped into an "Other" category for better readability.
- By default, the sum of all columns is used for the pie chart. For time series data, consider preprocessing.
dual_pie_with_plotly
dual_pie_with_plotly(data_left: Series, data_right: Series, colors: ColorType = 'viridis', title: str = '', subtitles: Tuple[str, str] = ('Left Chart', 'Right Chart'), legend_title: str = '', hole: float = 0.2, lower_percentage_group: float = 5.0, hover_template: str = '%{label}: %{value} (%{percent})', text_info: str = 'percent+label', text_position: str = 'inside') -> go.Figure
Create two pie charts side by side with Plotly, with consistent coloring across both charts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_left
|
Series
|
Series for the left pie chart. |
required |
data_right
|
Series
|
Series for the right pie chart. |
required |
colors
|
ColorType
|
Color specification, can be: - A string with a colorscale name (e.g., 'viridis', 'plasma') - A list of color strings (e.g., ['#ff0000', '#00ff00']) - A dictionary mapping category names to colors (e.g., {'Category1': '#ff0000'}) |
'viridis'
|
title
|
str
|
The main title of the plot. |
''
|
subtitles
|
Tuple[str, str]
|
Tuple containing the subtitles for (left, right) charts. |
('Left Chart', 'Right Chart')
|
legend_title
|
str
|
The title for the legend. |
''
|
hole
|
float
|
Size of the hole in the center for creating donut charts (0.0 to 100). |
0.2
|
lower_percentage_group
|
float
|
Whether to group small segments (below percentage (0...1)) into an "Other" category. |
5.0
|
hover_template
|
str
|
Template for hover text. Use %{label}, %{value}, %{percent}. |
'%{label}: %{value} (%{percent})'
|
text_info
|
str
|
What to show on pie segments: 'label', 'percent', 'value', 'label+percent', 'label+value', 'percent+value', 'label+percent+value', or 'none'. |
'percent+label'
|
text_position
|
str
|
Position of text: 'inside', 'outside', 'auto', or 'none'. |
'inside'
|
Returns:
Type | Description |
---|---|
Figure
|
A Plotly figure object containing the generated dual pie chart. |
dual_pie_with_matplotlib
dual_pie_with_matplotlib(data_left: Series, data_right: Series, colors: ColorType = 'viridis', title: str = '', subtitles: Tuple[str, str] = ('Left Chart', 'Right Chart'), legend_title: str = '', hole: float = 0.2, lower_percentage_group: float = 5.0, figsize: Tuple[int, int] = (14, 7), fig: Optional[Figure] = None, axes: Optional[List[Axes]] = None) -> Tuple[plt.Figure, List[plt.Axes]]
Create two pie charts side by side with Matplotlib, with consistent coloring across both charts. Leverages the existing pie_with_matplotlib function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_left
|
Series
|
Series for the left pie chart. |
required |
data_right
|
Series
|
Series for the right pie chart. |
required |
colors
|
ColorType
|
Color specification, can be: - A string with a colormap name (e.g., 'viridis', 'plasma') - A list of color strings (e.g., ['#ff0000', '#00ff00']) - A dictionary mapping category names to colors (e.g., {'Category1': '#ff0000'}) |
'viridis'
|
title
|
str
|
The main title of the plot. |
''
|
subtitles
|
Tuple[str, str]
|
Tuple containing the subtitles for (left, right) charts. |
('Left Chart', 'Right Chart')
|
legend_title
|
str
|
The title for the legend. |
''
|
hole
|
float
|
Size of the hole in the center for creating donut charts (0.0 to 1.0). |
0.2
|
lower_percentage_group
|
float
|
Whether to group small segments (below percentage) into an "Other" category. |
5.0
|
figsize
|
Tuple[int, int]
|
The size of the figure (width, height) in inches. |
(14, 7)
|
fig
|
Optional[Figure]
|
A Matplotlib figure object to plot on. If not provided, a new figure will be created. |
None
|
axes
|
Optional[List[Axes]]
|
A list of Matplotlib axes objects to plot on. If not provided, new axes will be created. |
None
|
Returns:
Type | Description |
---|---|
Tuple[Figure, List[Axes]]
|
A tuple containing the Matplotlib figure and list of axes objects used for the plot. |
export_figure
export_figure(figure_like: Union[Figure, Tuple[Figure, Axes]], default_path: Path, default_filetype: Optional[str] = None, user_path: Optional[Path] = None, show: bool = True, save: bool = False) -> Union[plotly.graph_objs.Figure, Tuple[plt.Figure, plt.Axes]]
Export a figure to a file and or show it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
figure_like
|
Union[Figure, Tuple[Figure, Axes]]
|
The figure to export. Can be a Plotly figure or a tuple of Matplotlib figure and axes. |
required |
default_path
|
Path
|
The default file path if no user filename is provided. |
required |
default_filetype
|
Optional[str]
|
The default filetype if the path doesnt end with a filetype. |
None
|
user_path
|
Optional[Path]
|
An optional user-specified file path. |
None
|
show
|
bool
|
Whether to display the figure (default: True). |
True
|
save
|
bool
|
Whether to save the figure (default: False). |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If no default filetype is provided and the path doesn't specify a filetype. |
TypeError
|
If the figure type is not supported. |