Skip to content

flixopt.commons

This module makes the commonly used classes and functions available in the flixopt framework.

Classes

AggregationParameters

AggregationParameters(hours_per_period: float, nr_of_periods: int, fix_storage_flows: bool, aggregate_data_and_fix_non_binary_vars: bool, percentage_of_period_freedom: float = 0, penalty_of_period_freedom: float = 0, time_series_for_high_peaks: List[TimeSeriesData] = None, time_series_for_low_peaks: List[TimeSeriesData] = None)

Initializes aggregation parameters for time series data

Parameters:

Name Type Description Default
hours_per_period float

Duration of each period in hours.

required
nr_of_periods int

Number of typical periods to use in the aggregation.

required
fix_storage_flows bool

Whether to aggregate storage flows (load/unload); if other flows are fixed, fixing storage flows is usually not required.

required
aggregate_data_and_fix_non_binary_vars bool

Whether to aggregate all time series data, which allows to fix all time series variables (like flow_rate), or only fix binary variables. If False non time_series data is changed!! If True, the mathematical Problem is simplified even further.

required
percentage_of_period_freedom float

Specifies the maximum percentage (0–100) of binary values within each period that can deviate as "free variables", chosen by the solver (default is 0). This allows binary variables to be 'partly equated' between aggregated periods.

0
penalty_of_period_freedom float

The penalty associated with each "free variable"; defaults to 0. Added to Penalty

0
time_series_for_high_peaks List[TimeSeriesData]

List of TimeSeriesData to use for explicitly selecting periods with high values.

None
time_series_for_low_peaks List[TimeSeriesData]

List of TimeSeriesData to use for explicitly selecting periods with low values.

None

Functions

AggregatedCalculation

AggregatedCalculation(name: str, flow_system: FlowSystem, aggregation_parameters: AggregationParameters, components_to_clusterize: Optional[List[Component]] = None, active_timesteps: Optional[DatetimeIndex] = None, folder: Optional[Path] = None)

Bases: FullCalculation

class for defined way of solving a flow_system optimization

Class for Optimizing the FlowSystem including: 1. Aggregating TimeSeriesData via typical periods using tsam. 2. Equalizing variables of typical periods. Args: name: name of calculation flow_system: flow_system which should be calculated aggregation_parameters: Parameters for aggregation. See documentation of AggregationParameters class. components_to_clusterize: List of Components to perform aggregation on. If None, then all components are aggregated. This means, teh variables in the components are equalized to each other, according to the typical periods computed in the DataAggregation active_timesteps: pd.DatetimeIndex or None list with indices, which should be used for calculation. If None, then all timesteps are used. folder: folder where results should be saved. If None, then the current working directory is used.

Functions

FullCalculation

FullCalculation(name: str, flow_system: FlowSystem, active_timesteps: Optional[DatetimeIndex] = None, folder: Optional[Path] = None)

Bases: Calculation

class for defined way of solving a flow_system optimization

Parameters:

Name Type Description Default
name str

name of calculation

required
flow_system FlowSystem

flow_system which should be calculated

required
active_timesteps Optional[DatetimeIndex]

list with indices, which should be used for calculation. If None, then all timesteps are used.

None
folder Optional[Path]

folder where results should be saved. If None, then the current working directory is used.

None

Functions

SegmentedCalculation

SegmentedCalculation(name: str, flow_system: FlowSystem, timesteps_per_segment: int, overlap_timesteps: int, nr_of_previous_values: int = 1, folder: Optional[Path] = None)

Bases: Calculation

Dividing and Modeling the problem in (overlapping) segments. The final values of each Segment are recognized by the following segment, effectively coupling charge_states and flow_rates between segments. Because of this intersection, both modeling and solving is done in one step

Take care: Parameters like InvestParameters, sum_of_flow_hours and other restrictions over the total time_series don't really work in this Calculation. Lower bounds to such SUMS can lead to weird results. This is NOT yet explicitly checked for...

Parameters:

Name Type Description Default
name str

name of calculation

required
flow_system FlowSystem

flow_system which should be calculated

required
timesteps_per_segment int

The number of time_steps per individual segment (without the overlap)

required
overlap_timesteps int

The number of time_steps that are added to each individual model. Used for better results of storages)

required
folder Optional[Path]

folder where results should be saved. If None, then the current working directory is used.

None

Attributes

start_values_of_segments property
start_values_of_segments: Dict[int, Dict[str, Any]]

Gives an overview of the start values of all Segments

Functions

LinearConverter

LinearConverter(label: str, inputs: List[Flow], outputs: List[Flow], on_off_parameters: OnOffParameters = None, conversion_factors: List[Dict[str, NumericDataTS]] = None, piecewise_conversion: Optional[PiecewiseConversion] = None, meta_data: Optional[Dict] = None)

Bases: Component

Converts input-Flows into output-Flows via linear conversion factors

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
inputs List[Flow]

The input Flows

required
outputs List[Flow]

The output Flows

required
on_off_parameters OnOffParameters

Information about on and off states. See class OnOffParameters.

None
conversion_factors List[Dict[str, NumericDataTS]]

linear relation between flows. Either 'conversion_factors' or 'piecewise_conversion' can be used!

None
piecewise_conversion Optional[PiecewiseConversion]

Define a piecewise linear relation between flow rates of different flows. Either 'conversion_factors' or 'piecewise_conversion' can be used!

None
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Sink

Sink(label: str, sink: Flow, meta_data: Optional[Dict] = None)

Bases: Component

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
meta_data Optional[Dict]

used to store more information about the element. Is not used internally, but saved in the results

None
sink Flow

input-flow of sink

required

Functions

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Source

Source(label: str, source: Flow, meta_data: Optional[Dict] = None)

Bases: Component

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
source Flow

output-flow of source

required
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

SourceAndSink

SourceAndSink(label: str, source: Flow, sink: Flow, prevent_simultaneous_sink_and_source: bool = True, meta_data: Optional[Dict] = None)

Bases: Component

class for source (output-flow) and sink (input-flow) in one commponent

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
source Flow

output-flow of this component

required
sink Flow

input-flow of this component

required
prevent_simultaneous_sink_and_source bool

If True, inflow and outflow can not be active simultaniously.

True
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Storage

Storage(label: str, charging: Flow, discharging: Flow, capacity_in_flow_hours: Union[Scalar, InvestParameters], relative_minimum_charge_state: NumericData = 0, relative_maximum_charge_state: NumericData = 1, initial_charge_state: Union[Scalar, Literal['lastValueOfSim']] = 0, minimal_final_charge_state: Optional[Scalar] = None, maximal_final_charge_state: Optional[Scalar] = None, eta_charge: NumericData = 1, eta_discharge: NumericData = 1, relative_loss_per_hour: NumericData = 0, prevent_simultaneous_charge_and_discharge: bool = True, meta_data: Optional[Dict] = None)

Bases: Component

Used to model the storage of energy or material.

Storages have one incoming and one outgoing Flow each with an efficiency. Further, storages have a size and a charge_state. Similarly to the flow-rate of a Flow, the size combined with a relative upper and lower bound limits the charge_state of the storage.

For mathematical details take a look at our online documentation

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
charging Flow

ingoing flow.

required
discharging Flow

outgoing flow.

required
capacity_in_flow_hours Union[Scalar, InvestParameters]

nominal capacity/size of the storage

required
relative_minimum_charge_state NumericData

minimum relative charge state. The default is 0.

0
relative_maximum_charge_state NumericData

maximum relative charge state. The default is 1.

1
initial_charge_state Union[Scalar, Literal['lastValueOfSim']]

storage charge_state at the beginning. The default is 0.

0
minimal_final_charge_state Optional[Scalar]

minimal value of chargeState at the end of timeseries.

None
maximal_final_charge_state Optional[Scalar]

maximal value of chargeState at the end of timeseries.

None
eta_charge NumericData

efficiency factor of charging/loading. The default is 1.

1
eta_discharge NumericData

efficiency factor of uncharging/unloading. The default is 1.

1
relative_loss_per_hour NumericData

loss per chargeState-Unit per hour. The default is 0.

0
prevent_simultaneous_charge_and_discharge bool

If True, loading and unloading at the same time is not possible. Increases the number of binary variables, but is recommended for easier evaluation. The default is True.

True
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Transmission

Transmission(label: str, in1: Flow, out1: Flow, in2: Optional[Flow] = None, out2: Optional[Flow] = None, relative_losses: Optional[NumericDataTS] = None, absolute_losses: Optional[NumericDataTS] = None, on_off_parameters: OnOffParameters = None, prevent_simultaneous_flows_in_both_directions: bool = True, meta_data: Optional[Dict] = None)

Bases: Component

Initializes a Transmission component (Pipe, cable, ...) that models the flows between two sides with potential losses.

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
in1 Flow

The inflow at side A. Pass InvestmentParameters here.

required
out1 Flow

The outflow at side B.

required
in2 Optional[Flow]

The optional inflow at side B. If in1 got InvestParameters, the size of this Flow will be equal to in1 (with no extra effects!)

None
out2 Optional[Flow]

The optional outflow at side A.

None
relative_losses Optional[NumericDataTS]

The relative loss between inflow and outflow, e.g., 0.02 for 2% loss.

None
absolute_losses Optional[NumericDataTS]

The absolute loss, occur only when the Flow is on. Induces the creation of the ON-Variable

None
on_off_parameters OnOffParameters

Parameters defining the on/off behavior of the component.

None
prevent_simultaneous_flows_in_both_directions bool

If True, inflow and outflow are not allowed to be both non-zero at same timestep.

True
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

CONFIG

A configuration class that stores global configuration values as class attributes.

Functions

load_config classmethod
load_config(user_config_file: Optional[str] = None)

Initialize configuration using defaults or user-specified file.

to_dict classmethod
to_dict()

Convert the configuration class into a dictionary for JSON serialization. Handles dataclasses and simple types like str, int, etc.

TimeSeriesData

TimeSeriesData(data: NumericData, agg_group: Optional[str] = None, agg_weight: Optional[float] = None)

timeseries class for transmit timeseries AND special characteristics of timeseries, i.g. to define weights needed in calculation_type 'aggregated' EXAMPLE solar: you have several solar timeseries. These should not be overweighted compared to the remaining timeseries (i.g. heat load, price)! fixed_relative_profile_solar1 = TimeSeriesData(sol_array_1, type = 'solar') fixed_relative_profile_solar2 = TimeSeriesData(sol_array_2, type = 'solar') fixed_relative_profile_solar3 = TimeSeriesData(sol_array_3, type = 'solar') --> this 3 series of same type share one weight, i.e. internally assigned each weight = 1/3 (instead of standard weight = 1)

Parameters:

Name Type Description Default
data NumericData

The timeseries data, which can be a scalar, array, or numpy array.

required
agg_group Optional[str]

The group this TimeSeriesData is a part of. agg_weight is split between members of a group. Default is None.

None
agg_weight Optional[float]

The weight for calculation_type 'aggregated', should be between 0 and 1. Default is None.

None

Raises:

Type Description
Exception

If both agg_group and agg_weight are set, an exception is raised.

Functions

Effect

Effect(label: str, unit: str, description: str, meta_data: Optional[Dict] = None, is_standard: bool = False, is_objective: bool = False, specific_share_to_other_effects_operation: Optional[EffectValuesUser] = None, specific_share_to_other_effects_invest: Optional[EffectValuesUser] = None, minimum_operation: Optional[Scalar] = None, maximum_operation: Optional[Scalar] = None, minimum_invest: Optional[Scalar] = None, maximum_invest: Optional[Scalar] = None, minimum_operation_per_hour: Optional[NumericDataTS] = None, maximum_operation_per_hour: Optional[NumericDataTS] = None, minimum_total: Optional[Scalar] = None, maximum_total: Optional[Scalar] = None)

Bases: Element

Effect, i.g. costs, CO2 emissions, area, ... Components, FLows, and so on can contribute to an Effect. One Effect is chosen as the Objective of the Optimization

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
unit str

The unit of effect, i.g. €, kg_CO2, kWh_primaryEnergy

required
description str

The long name

required
is_standard bool

true, if Standard-Effect (for direct input of value without effect (alternatively to dict)) , else false

False
is_objective bool

true, if optimization target

False
specific_share_to_other_effects_operation Optional[EffectValuesUser]

{effectType: TS, ...}, i.g. 180 €/t_CO2, input as {costs: 180}, optional share to other effects (only operation)

None
specific_share_to_other_effects_invest Optional[EffectValuesUser]

{effectType: TS, ...}, i.g. 180 €/t_CO2, input as {costs: 180}, optional share to other effects (only invest).

None
minimum_operation Optional[Scalar]

minimal sum (only operation) of the effect.

None
maximum_operation Optional[Scalar]

maximal sum (nur operation) of the effect.

None
minimum_operation_per_hour Optional[NumericDataTS]

max. value per hour (only operation) of effect (=sum of all effect-shares) for each timestep!

None
maximum_operation_per_hour Optional[NumericDataTS]

min. value per hour (only operation) of effect (=sum of all effect-shares) for each timestep!

None
minimum_invest Optional[Scalar]

minimal sum (only invest) of the effect

None
maximum_invest Optional[Scalar]

maximal sum (only invest) of the effect

None
minimum_total Optional[Scalar]

min sum of effect (invest+operation).

None
maximum_total Optional[Scalar]

max sum of effect (invest+operation).

None
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Bus

Bus(label: str, excess_penalty_per_flow_hour: Optional[NumericDataTS] = 100000.0, meta_data: Optional[Dict] = None)

Bases: Element

A Bus represents a nodal balance between the flow rates of its incoming and outgoing Flows.

Parameters:

Name Type Description Default
label str

The label of the Element. Used to identify it in the FlowSystem

required
excess_penalty_per_flow_hour Optional[NumericDataTS]

excess costs / penalty costs (bus balance compensation) (none/ 0 -> no penalty). The default is 1e5. (Take care: if you use a timeseries (no scalar), timeseries is aggregated if calculation_type = aggregated!)

100000.0
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Flow

Flow(label: str, bus: str, size: Union[Scalar, InvestParameters] = None, fixed_relative_profile: Optional[NumericDataTS] = None, relative_minimum: NumericDataTS = 0, relative_maximum: NumericDataTS = 1, effects_per_flow_hour: Optional[EffectValuesUser] = None, on_off_parameters: Optional[OnOffParameters] = None, flow_hours_total_max: Optional[Scalar] = None, flow_hours_total_min: Optional[Scalar] = None, load_factor_min: Optional[Scalar] = None, load_factor_max: Optional[Scalar] = None, previous_flow_rate: Optional[NumericData] = None, meta_data: Optional[Dict] = None)

Bases: Element

A Flow moves energy (or material) between a Bus and a Component in a predefined direction. The flow-rate is the main optimization variable of the Flow.

Parameters:

Name Type Description Default
label str

The label of the FLow. Used to identify it in the FlowSystem. Its full_label consists of the label of the Component and the label of the Flow.

required
bus str

blabel of the bus the flow is connected to.

required
size Union[Scalar, InvestParameters]

size of the flow. If InvestmentParameters is used, size is optimized. If size is None, a default value is used.

None
relative_minimum NumericDataTS

min value is relative_minimum multiplied by size

0
relative_maximum NumericDataTS

max value is relative_maximum multiplied by size. If size = max then relative_maximum=1

1
load_factor_min Optional[Scalar]

minimal load factor general: avg Flow per nominalVal/investSize (e.g. boiler, kW/kWh=h; solarthermal: kW/m²; def: :math:load\_factor:= sumFlowHours/ (nominal\_val \cdot \Delta t_{tot})

None
load_factor_max Optional[Scalar]

maximal load factor (see minimal load factor)

None
effects_per_flow_hour Optional[EffectValuesUser]

operational costs, costs per flow-"work"

None
on_off_parameters Optional[OnOffParameters]

If present, flow can be "off", i.e. be zero (only relevant if relative_minimum > 0) Therefore a binary var "on" is used. Further, several other restrictions and effects can be modeled through this On/Off State (See OnOffParameters)

None
flow_hours_total_max Optional[Scalar]

maximum flow-hours ("flow-work") (if size is not const, maybe load_factor_max is the better choice!)

None
flow_hours_total_min Optional[Scalar]

minimum flow-hours ("flow-work") (if size is not predefined, maybe load_factor_min is the better choice!)

None
fixed_relative_profile Optional[NumericDataTS]

fixed relative values for flow (if given). flow_rate(t) := fixed_relative_profile(t) * size(t) With this value, the flow_rate is no optimization-variable anymore. (relative_minimum and relative_maximum are ignored) used for fixed load or supply profiles, i.g. heat demand, wind-power, solarthermal If the load-profile is just an upper limit, use relative_maximum instead.

None
previous_flow_rate Optional[NumericData]

previous flow rate of the component.

None
meta_data Optional[Dict]

used to store more information about the Element. Is not used internally, but saved in the results. Only use python native types.

None

Functions

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

FlowSystem

FlowSystem(timesteps: DatetimeIndex, hours_of_last_timestep: Optional[float] = None, hours_of_previous_timesteps: Optional[Union[int, float, ndarray]] = None)

A FlowSystem organizes the high level Elements (Components & Effects).

Parameters:

Name Type Description Default
timesteps DatetimeIndex

The timesteps of the model.

required
hours_of_last_timestep Optional[float]

The duration of the last time step. Uses the last time interval if not specified

None
hours_of_previous_timesteps Optional[Union[int, float, ndarray]]

The duration of previous timesteps. If None, the first time increment of time_series is used. This is needed to calculate previous durations (for example consecutive_on_hours). If you use an array, take care that its long enough to cover all previous values!

None

Functions

from_dict classmethod
from_dict(data: Dict) -> FlowSystem

Load a FlowSystem from a dictionary.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the FlowSystem data.

required
from_netcdf classmethod
from_netcdf(path: Union[str, Path])

Load a FlowSystem from a netcdf file

add_elements
add_elements(*elements: Element) -> None

Add Components(Storages, Boilers, Heatpumps, ...), Buses or Effects to the FlowSystem

Parameters:

Name Type Description Default
*elements Element

childs of Element like Boiler, HeatPump, Bus,... modeling Elements

()
to_json
to_json(path: Union[str, Path])

Saves the flow system to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the flow_system to others.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
as_dict
as_dict(data_mode: Literal['data', 'name', 'stats'] = 'data') -> Dict

Convert the object to a dictionary representation.

as_dataset
as_dataset(constants_in_dataset: bool = False) -> xr.Dataset

Convert the FlowSystem to a xarray Dataset.

Parameters:

Name Type Description Default
constants_in_dataset bool

If True, constants are included as Dataset variables.

False
to_netcdf
to_netcdf(path: Union[str, Path], compression: int = 0, constants_in_dataset: bool = True)

Saves the FlowSystem to a netCDF file. Args: path: The path to the netCDF file. compression: The compression level to use when saving the file. constants_in_dataset: If True, constants are included as Dataset variables.

plot_network
plot_network(path: Union[bool, str, Path] = 'flow_system.html', controls: Union[bool, List[Literal['nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer']]] = True, show: bool = False) -> Optional[pyvis.network.Network]

Visualizes the network structure of a FlowSystem using PyVis, saving it as an interactive HTML file.

Parameters:

Name Type Description Default
path Union[bool, str, Path]

Path to save the HTML visualization. - False: Visualization is created but not saved. - str or Path: Specifies file path (default: 'flow_system.html').

'flow_system.html'
controls Union[bool, List[Literal['nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer']]]

UI controls to add to the visualization. - True: Enables all available controls. - List: Specify controls, e.g., ['nodes', 'layout']. - Options: 'nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer'.

True
show bool

Whether to open the visualization in the web browser.

False

Returns: - Optional[pyvis.network.Network]: The Network instance representing the visualization, or None if pyvis is not installed.

Examples:

>>> flow_system.plot_network()
>>> flow_system.plot_network(show=False)
>>> flow_system.plot_network(path='output/custom_network.html', controls=['nodes', 'layout'])

Notes: - This function requires pyvis. If not installed, the function prints a warning and returns None. - Nodes are styled based on type (e.g., circles for buses, boxes for components) and annotated with node information.

create_time_series
create_time_series(name: str, data: Optional[Union[NumericData, TimeSeriesData, TimeSeries]], needs_extra_timestep: bool = False) -> Optional[TimeSeries]

Tries to create a TimeSeries from NumericData Data and adds it to the time_series_collection If the data already is a TimeSeries, nothing happens and the TimeSeries gets reset and returned If the data is a TimeSeriesData, it is converted to a TimeSeries, and the aggregation weights are applied. If the data is None, nothing happens.

create_effect_time_series
create_effect_time_series(label_prefix: Optional[str], effect_values: EffectValuesUser, label_suffix: Optional[str] = None) -> Optional[EffectTimeSeries]

Transform EffectValues to EffectTimeSeries. Creates a TimeSeries for each key in the nested_values dictionary, using the value as the data.

The resulting label of the TimeSeries is the label of the parent_element, followed by the label of the Effect in the nested_values and the label_suffix. If the key in the EffectValues is None, the alias 'Standard_Effect' is used

InvestParameters

InvestParameters(fixed_size: Optional[Union[int, float]] = None, minimum_size: Union[int, float] = 0, maximum_size: Optional[Union[int, float]] = None, optional: bool = True, fix_effects: Optional[EffectValuesUserScalar] = None, specific_effects: Optional[EffectValuesUserScalar] = None, piecewise_effects: Optional[PiecewiseEffects] = None, divest_effects: Optional[EffectValuesUserScalar] = None)

Bases: Interface

collects arguments for invest-stuff

Parameters:

Name Type Description Default
fix_effects Optional[EffectValuesUserScalar]

Fixed investment costs if invested. (Attention: Annualize costs to chosen period!)

None
divest_effects Optional[EffectValuesUserScalar]

Fixed divestment costs (if not invested, e.g., demolition costs or contractual penalty).

None
fixed_size Optional[Union[int, float]]

Determines if the investment size is fixed.

None
optional bool

If True, investment is not forced.

True
specific_effects Optional[EffectValuesUserScalar]

Specific costs, e.g., in €/kW_nominal or €/m²_nominal. Example: {costs: 3, CO2: 0.3} with costs and CO2 representing an Object of class Effect (Attention: Annualize costs to chosen period!)

None
piecewise_effects Optional[PiecewiseEffects]

Linear piecewise relation [invest_pieces, cost_pieces]. Example 1: [ [5, 25, 25, 100], # size in kW {costs: [50,250,250,800], # € PE: [5, 25, 25, 100] # kWh_PrimaryEnergy } ] Example 2 (if only standard-effect): [ [5, 25, 25, 100], # kW # size in kW [50,250,250,800] # value for standart effect, typically € ] # € (Attention: Annualize costs to chosen period!) (Args 'specific_effects' and 'fix_effects' can be used in parallel to Investsizepieces)

None
minimum_size Union[int, float]

Min nominal value (only if: size_is_fixed = False).

0
maximum_size Optional[Union[int, float]]

Max nominal value (only if: size_is_fixed = False).

None

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

OnOffParameters

OnOffParameters(effects_per_switch_on: Optional[EffectValuesUser] = None, effects_per_running_hour: Optional[EffectValuesUser] = None, on_hours_total_min: Optional[int] = None, on_hours_total_max: Optional[int] = None, consecutive_on_hours_min: Optional[NumericData] = None, consecutive_on_hours_max: Optional[NumericData] = None, consecutive_off_hours_min: Optional[NumericData] = None, consecutive_off_hours_max: Optional[NumericData] = None, switch_on_total_max: Optional[int] = None, force_switch_on: bool = False)

Bases: Interface

Bundles information about the on and off state of an Element. If no parameters are given, the default is to create a binary variable for the on state without further constraints or effects and a variable for the total on hours.

Parameters:

Name Type Description Default
effects_per_switch_on Optional[EffectValuesUser]

cost of one switch from off (var_on=0) to on (var_on=1), unit i.g. in Euro

None
effects_per_running_hour Optional[EffectValuesUser]

costs for operating, i.g. in € per hour

None
on_hours_total_min Optional[int]

min. overall sum of operating hours.

None
on_hours_total_max Optional[int]

max. overall sum of operating hours.

None
consecutive_on_hours_min Optional[NumericData]

min sum of operating hours in one piece (last on-time period of timeseries is not checked and can be shorter)

None
consecutive_on_hours_max Optional[NumericData]

max sum of operating hours in one piece

None
consecutive_off_hours_min Optional[NumericData]

min sum of non-operating hours in one piece (last off-time period of timeseries is not checked and can be shorter)

None
consecutive_off_hours_max Optional[NumericData]

max sum of non-operating hours in one piece

None
switch_on_total_max Optional[int]

max nr of switchOn operations

None
force_switch_on bool

force creation of switch on variable, even if there is no switch_on_total_max

False

Attributes

use_off property
use_off: bool

Determines wether the OFF Variable is needed or not

use_consecutive_on_hours property
use_consecutive_on_hours: bool

Determines wether a Variable for consecutive off hours is needed or not

use_consecutive_off_hours property
use_consecutive_off_hours: bool

Determines wether a Variable for consecutive off hours is needed or not

use_switch_on property
use_switch_on: bool

Determines wether a Variable for SWITCH-ON is needed or not

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Piece

Piece(start: NumericData, end: NumericData)

Bases: Interface

Define a Piece, which is part of a Piecewise object.

Parameters:

Name Type Description Default
start NumericData

The x-values of the piece.

required
end NumericData

The end of the piece.

required

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

Piecewise

Piecewise(pieces: List[Piece])

Bases: Interface

Define a Piecewise, consisting of a list of Pieces.

Parameters:

Name Type Description Default
pieces List[Piece]

The pieces of the piecewise.

required

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

PiecewiseConversion

PiecewiseConversion(piecewises: Dict[str, Piecewise])

Bases: Interface

Define a piecewise conversion between multiple Flows. --> "gaps" can be expressed by a piece not starting at the end of the prior piece: [(1,3), (4,5)] --> "points" can expressed as piece with same begin and end: [(3,3), (4,4)]

Parameters:

Name Type Description Default
piecewises Dict[str, Piecewise]

Dict of Piecewises defining the conversion factors. flow labels as keys, piecewise as values

required

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required

PiecewiseEffects

PiecewiseEffects(piecewise_origin: Piecewise, piecewise_shares: Dict[str, Piecewise])

Bases: Interface

Define piecewise effects related to a variable.

Parameters:

Name Type Description Default
piecewise_origin Piecewise

Piecewise of the related variable

required
piecewise_shares Dict[str, Piecewise]

Piecewise defining the shares to different Effects

required

Functions

infos
infos(use_numpy: bool = True, use_element_label: bool = False) -> Dict

Generate a dictionary representation of the object's constructor arguments. Excludes default values and empty dictionaries and lists. Converts data to be compatible with JSON.

Parameters:

Name Type Description Default
use_numpy bool

Whether to convert NumPy arrays to lists. Defaults to True. If True, numeric numpy arrays (np.ndarray) are preserved as-is. If False, they are converted to lists.

True
use_element_label bool

Whether to use the element label instead of the infos of the element. Defaults to False. Note that Elements used as keys in dictionaries are always converted to their labels.

False

Returns:

Type Description
Dict

A dictionary representation of the object's constructor arguments.

to_json
to_json(path: Union[str, Path])

Saves the element to a json file. This not meant to be reloaded and recreate the object, but rather used to document or compare the object.

Parameters:

Name Type Description Default
path Union[str, Path]

The path to the json file.

required
to_dict
to_dict() -> Dict

Convert the object to a dictionary representation.

from_dict classmethod
from_dict(data: Dict) -> Interface

Create an instance from a dictionary representation.

Parameters:

Name Type Description Default
data Dict

Dictionary containing the data for the object.

required